Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 59, nr 2 | 339-353
Tytuł artykułu

Morphological plasticity of leaves in natural regeneration of Fagus sylvatica L. : effects of direct and diffuse light, ontogeny and shoot type

Warianty tytułu
Języki publikacji
It is known that the role of accessible light as a growth-determining factor in beech natural regeneration rises in importance with growth of individuals. However, the accompanied changes in leaf traits underlying this shift in light demands are not well known. The aim of this study was to investigate influence of ontogenetic stage (0.5 m high 'seedlings', 2.1 m 'saplings'), shoot type (terminal, lateral long and lateral short) and diffuse and direct light on morphological traits of leaves at spring-shoot-level in naturally regenerated beech individuals - shoot mean leaf area (mLA), shoot mean leaf weight (mLW), leaf mass per area (LMA), leaf area per shoot unit length (LAL), leaf mass per shoot unit length (LWL), number of leaves per shoot unit length (NLL), and ratio of mean-leaf width to its length (LSh). Ontogenetic drift affected the values of these traits; its influence depended on shoot type and component of light. The light explained more trait variability in saplings compared to seedlings (on average 45% vs 32%). The most evident shift was in the case of direct light - while direct light explained on average 18% of traits variability in seedlings, it was about 42% in saplings. The saplings compared with seedlings showed higher values of mLA, mLW, LMA, LAL on short shoots, LWL on lateral long and short shoots, LSh on terminal and lateral long shoots, and lower NLL values on terminal and long lateral shoots. Plastic response to light was higher in saplings than in seedlings (except mLA). Generally, the observed traits showed more plastic response to diffuse than to direct light in seedlings; the response of saplings was similar in both light components. The most plastic trait was LMA, the least LSh. Individuals of saplings displayed higher plasticity in traits close correlating with annual length growth of main axis, which suggests that saplings would benefit from increased light availability more than seedlings.

Opis fizyczny
Bibliogr. 65 poz.,Rys., tab.,
  • 1. Abrams M.D., Kubiske M.E., Mostoller S.A. 1994 – Relating wet and dry year ecophysiology to leaf structure in contrasting temperate tree species – Ecology, 75: 123–133.
  • 2. Ammer C. 2003 – Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation – Ann. For. Sci. 60: 163–171.
  • 3. Ammer C., Stimm B., Mosandl R., 2008 – Ontogenetic variation in the relative influence of light and belowground resources on European beech seedling growth – Tree Physiol. 28: 721–728.
  • 4. Aranda I., Bergasa L.F., Gil L., Pardos J.A. 2001 – Effects of relative irradiance on the leaf structure of Fagus sylvatica L. seedlings planted in the understory of a Pinus sylvestris L. stand after thinning – Ann. For. Sci. 58: 673–680.
  • 5. Balandier P., Sinoquet H., Frak E., Giuliani R., Vandame M., Descamps S., Coll L., Adam B., Prevosto B., Curt T. 2007 – Six-year time course of light-use efficiency, carbon gain and growth of beech saplings (Fagus sylvatica) planted under a Scots pine (Pinus sylvestris) shelterwood – Tree Physiol. 27: 1073–1082.
  • 6. Barna M., Schieber B., Cicák A. 2009 – Effect of post-cutting changes in site conditions on the morphology and phenology of naturally regenerated beech seedlings (Fagus sylvatica L.) – Pol. J. Ecol. 57: 461–472.
  • 7. Berntson G.M., Wayne P.M. 2000 – Characterizing the size dependence of resource acquisition within crowded plant populations – Ecology, 81: 1072–1085.
  • 8. Cicák A. 2003 – Estimation of morphological parameters for European beech leaves on spring shoots using the method of calculation coefficients – Fol. Oecol. 30: 131–140.
  • 9. Cicák A. 2008 – Stanovenia suchej hmotnosti listov jarných výhonkov buka lesného metódou prepočtových koeficientov – E-ekológia lesa 6 – Ústav ekológie lesa SAV, Zvolen, 9, [15.7.2009]
  • 10. Cicák A., Štefančík I. 1993 – Phenology of bud breaking of beech (Fagus sylvatica L.) in relation to stocking of its tree component – Ekológia (Bratislava), 12: 441–448.
  • 11. Cochard H., Coste S., Chanson B., Guehl J.M., Nicolini E. 2005 – Hydraulic architecture correlates with bud organogenesis and primary shoot growth in beech (Fagus sylvatica) – Tree Physiol. 25: 1545–1552.
  • 12. Curt T., Coll L., Prévosto B., Balandier P., Kunstler G. 2005 – Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition – Ann. For. Sci.62: 51–60.
  • 13. Delagrange S., Montpied P., Dreyer E., Messier C., Sinoquet H. 2006 – Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and – intolerant temperate deciduous tree species – New Phytol. 172: 293–304.
  • 14. Diaci J. 2002 – Regeneration dynamics in a Norway spruce plantation on a silver fir-beech forest site in the Slovenian Alps – For. Ecol. Manag. 161: 27–38.
  • 15. Drößler L., von Lüpke B. 2005 – Canopy gaps in two virgin beech forest reserves in Slovakia – J. For. Sci. 51: 446–457.
  • 16. Frazer G.W., Canham C.D., Lertzman K.P. 1999 – Gap light analyzer (GLA). Version 2.0. Imaging software to extract canopy structure and gap light transmission indices from true-color fisheye potographs: users’ manual and program documentation – Simon Fraser University, Burnaby, 36 pp.
  • 17. Gansert D., Sprick W. 1998 – Storage and mobilization of nonstructural carbohydrates and biomass development of beech seedlings (Fagus sylvatica L.) under different light regimes – Trees, 12: 247–257.
  • 18. Gardiner E.S., Löf M., O‘Brien J.J., Stanturf J.A., Madsen P. 2009 – Photosynthetic characteristics of Fagus sylvatica and Quercus robur established for stand conversion from Picea abies – For. Ecol. Manag. 258: 868–878.
  • 19. Grime J.P., Mackey J.M.L. 2002 – The role of plasticity in resource capture by plants – Evol. Ecol. 16: 299–307.
  • 20. Hallik L., Niinemets Ü., Wright J.I. 2009 – Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? – New Phytol. 184: 257–274.
  • 21. Harper J.L. 1989 – The value of leaf – Oecologia, 80: 53–58.
  • 22. Jaloviar P., Kucbel S. 2009 – Základná charakteristika svetelnej mikroklímy v bukovom prírodnom lese v NPR Badínsky prales (In: Pestovanie lesa ako nástroj cieľavedomého využívania potenciálu lesov, Eds: I. Štefančík, M. Kamenský) – Národné lesnícke centrum, Zvolen, pp. 299–305.
  • 23. Jarčuška B. 2009 – Growth, survival, density, biomass allocation and morphological adaptations of natural regeneration of Fagus sylvatica. A review – Dendrobiology, 61: 3–11.
  • 24. Johnson J.D., Tognetti R., Michelozzi M., Pinzauti S., Minotta G., Borghetti M. 1997 – Ecophysiological responses of Fagus sylvatica seedlings to changing light conditions. II. The interaction of light environment and soil fertility on seedling physiology – Physiolog. Plantarum, 101: 124–134.
  • 25. Kleiman D., Aarssen L.W. 2007 – The leaf size/number trade-off in trees – J. Ecol. 95: 376–382.
  • 26. Kunstler G., Curt T., Lepart J. 2004 – Spatial pattern of beech (Fagus sylvatica L.) and oak (Quercus pubescens Mill.) seedlings in natural pine (Pinus sylvestris L.) woodlands – Eur. J. For. Res. 123: 331–337.
  • 27. Kunstler G., Curt T., Bouchaud M., Lepart J. 2005 – Growth, mortality and morphological response of European beech and downy oak along a light gradient in sub-Mediterranean forest – Can. J. For. Res. 35: 1657–1668.
  • 28. Lambers H., Chapin F.S., Pons T.L. 2008 – Plant Physiological Ecology – Springer, New York, 591 pp.
  • 29. Löf M., Bolte A., Welander N.T. 2005 – Interacting effects of irradiance and water stress on dry weight and biomass partitioning in Fagus sylvatica seedlings – Scan. J. For. Res. 20: 322–328.
  • 30. Meyers L.S., Gamst G., Guarino A.J. 2005 – Applied multivariate research: design and interpretation – Sage, London, 722 pp.
  • 31. Minotta G., Pinzauti S. 1996 – Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings – For. Ecol. Manag. 86: 61–71.
  • 32. Nicolini E. 2000 – Nouvelles observations sur la morphologie des unités de croissance du hêtre (Fagus sylvatica L.). Symétrie des pousses, reflet de la vigueur des arbres – Can. J. Bot. 78: 77–87.
  • 33. Niinemets Ü. 2006 – The controversy over traits conferring shade-tolerance in trees: ontogenic changes revisited – J. Ecol. 94: 464–470.
  • 34. Niinemets Ü., Portsmuth A., Tena D., Tobias M., Matesanz S., Valladares F. 2007 – Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy – Ann. Bot. 100: 283–303.
  • 35. Niinemets Ü., Valladares F. 2004 – Photosynthetic aclimation to simultaneous and interacting environmental stresses along antural light gradients: optimality and constraints – Plant. Biol. 6: 254–268.
  • 36. Nobis M. 2005 – SideLook 1.1 – Imaging software for the analysis of vegetation structure with true-colour photo graphs, 6 pp. On-line: [31.3.2008]
  • 37. Nobis M., Hunziker U. 2005 – Automatic thresholding for hemispherical canopyphotographs based on edge detection – Agric. For. Meteorol. 128: 243–250.
  • 38. Pearcy R .W. 2007 – Responses of plants to heterogenous light environments (In: Functional plant ecology, Eds: F.I. Pugnaire, F. Valladares) – CRC Press, Boca Raton, pp. 213–257.
  • 39. Peltier A., Touzet M.C., Armengaud C., Ponge J.F. 1997 – Establishment of Fagus sylvatica and Fraxinus excelsior in an old-growth beech forest – J. Veg. Sci. 8: 13–20.
  • 40. Petritan A.M., Lüpke B., Petritan I.C. 2009 – Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings – Eur. J. For. Sci. 128: 61–74.
  • 41. Planchais I., Sinoquet H. 1998 – Foliage determinants of light interception in sunny and shaded branches of Fagus sylvatica (L.) – Agric. For. Meteorol. 89: 241–253.
  • 42. Poorter L. 2001 – Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species – Funct. Ecol. 15: 113–123.
  • 43. Rozenbergar D., Stjepan M., Anić I., Diaci J. 2007 – Gap regeneration patterns in relationship to light heterogeneity in two oldgrowth beech-fir forest reserves in South East Europe – Forestry, 80: 431–443.
  • 44. Rozendaal D.M.A., Hurtado V.H., Poorter L. 2006 – Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature – Funct. Ecol. 20: 207–216.
  • 45. Šály R ., Šurina B. 2002 – Soils (In: Landscape atlas of the Slovak Republic, Eds: L. Miklós, P. Maráky, J. Klinda) – Ministry of Environment of the Slovak Republic, Slovak Environmental Agency, Bratislava, Banská Bystrica, pp. 106–107.
  • 46. Schieber B. 2006 – Spring phenology of European beech (Fagus sylvatica L.) in submontain beech forest stand with various stocking between 1995–2004 – J. For. Sci. 52: 208–216.
  • 47. Schlichting C.D. 1986 – The evolution of phenotypic plasticity in plants – Annu. Rev. Ecol. Syst. 17: 667–693.
  • 48. Schulze E.D., Beck E., Müller-Hohenstein K. 2005 – Plant Ecology – Springer Berlin, Heidelberg, 693 pp.
  • 49. Sokal R.R., Rohlf F.J. 1995 – Biometry – Freeman, New York, 887 pp.
  • 50. Stanciou P.T., O’Hara K.L. 2006 – Morphological plasticity of regeneration subject to different levels of canopy cover in mixed-species, multiaged forests of the Romanian Carpathians – Trees, 20: 196–209.
  • 51. Szwagrzyk J., Szewczyk J., Bodziarczyk J. 2001 – Dynamics of seedling bank in beech forest: results of a 10-year study on germina tion, growth and survival – For. Ecol. Manag. 141: 237–250.
  • 52. Thiebaut B., Payri C., Vigneron P., Puech S. 1981 – Observations sur la croissance et la floraison du hetre – Natur. Monspel., ser. Bot. 48: 1–25.
  • 53. Tognetti R., Johnson J.D., Michelzzi M. 1997 – Ecophysiological responses of Fagus sylvatica seedlings to changing light conditions. I. Interactions between photosynthetic acclimation and photoinhibition during simulated canopy gap formation – Physiol. Plantarum, 101: 115–123.
  • 54. Tognetti R. Minotta G., Pinzauti S., Michelozzi M., Borghetti M. 1998 – Acclimation to changing light conditions of longterm shade-grown beech (Fagus sylvatica L.) seedlings of different geographic origins – Trees, 12: 326–333.
  • 55. Valladares F. 2000 – Light and plant evolution: adaptation to the extremes versus phenotypic plasticity (In: Advanced studies in plant biology, Ed: H. Greppin) – University of Geneva, Geneva, pp. 341–355.
  • 56. Valladares F. 2003 – Light heterogeneity and plants: from ecophysiology to species coexistence and biodiversity (In: Progress in botany, Eds: K. Esser, U. Lüttge, W. Beyschlag, F. Hellwig) – Springer, Heidelberg, pp. 439–71.
  • 57. Valladares F., Chico J.M., Aranda I., Balaguer L., Dizengremel P., Manrique E., Dreyer E. 2002 – The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasricity – Trees, 16: 395–403.
  • 58. Valladares F., Gianoli E., Gómez J.M. 2007 – Ecological limits to plant phenotypic plasticity – New Phytol. 176: 749–763.
  • 59. Valladares F., Niinemets Ü. 2008 – Shade tolerance, a key plant feature of complex nature and consequences – Annu. Rev. Ecol. Evol. Syst. 39: 237–57.
  • 60. van Hees A.F.M. 1997 – Growth and morphology of pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) seedlings in relation to shading and drought – Ann. For. Sci.54: 9–18.
  • 61. van Hees A.F.M., Clerkx A.P.P.M. 2003 – Shading and root-shoot relations in saplings of silver birch, pedunculate oak and beech – For. Ecol. Manag. 176: 439–448.
  • 62. Watt A.S. 1923 – On the ecology of British beechwoods with special reference to their regeneration – J. Ecol. 11: l–48.
  • 63. Welander N.T., Ottosson, B. 1998 – The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. – For. Ecol. Manag. 107: 117–126.
  • 64. Weiner J. 2004 – Allocation, plasticity and allometry in plants – Perspect. Plant Ecol. Evol. Syst. 6: 207–215.
  • 65. Zar J.H. 1999 – Biostatistical analysis – Prentice Hall, New Jersey, 929 pp.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.