PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 59, nr 1 | 3-23
Tytuł artykułu

Forecasting carbon budget under climate change and CO2 fertilization for subtropical region in China using Integrated Biosphere Simulator (IBIS) model

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr[^-1] during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr[^-1]. NEP will increase to about 5 Mt C yr[^-1] by the end of the 21st century with the increasing atmospheric CO2concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang.s forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration willhave little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.
Wydawca

Rocznik
Strony
3-23
Opis fizyczny
Bibliogr. 72 poz.,Rys., tab.,
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
autor
  • International Institute for Earth System Science, Nanjing University, Hankou Road 22, Nanjing 210093, China
Bibliografia
  • 1. Bachelet D., Neilson R. P., Lenihan J. M., Drapek R.J. 2001 – Climate change effects on vegetation distribution and carbon budget in the United States – Ecosystems, 4: 164–185.
  • 2. Bakkenes M., Alkemade J., Ihle F., Leemans R., Latour J. 2002 – Assessing effects of forecast climate change on the diversity and distribution of European higher plants for 2050 – Global Change Biol. 8: 390–407.
  • 3. Ball J. T., Woodrow I. E., Berry J. A. 1986 – A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental condition (In: Progress in Photosynthesis Research, Ed. J. Biggings) – Martinus Nijhoff, Leiden, pp. 221–224.
  • 4. Brovkin V., Ganopolski A., Svirezhev Y. 1997 – A continuous climate-vegetation classification for use in climate-biosphere studies - Ecol. Model. 101: 251–261.
  • 5. Cao M. K., Prince S. D., Li K., Tao B., Small J., Shao X. M. 2003 – Response of terrestrial carbon uptake to climate interannual variability in China – Global Change Biol. 9: 536–546.
  • 6. Cao M. K., Woodward F. I. 1998 – Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change – Global Change Biol. 4: 185–198.
  • 7. Cao M. K., Zhang Q., Shugart H. H. 2001 – Dynamic responses of African ecosystem carbon cycling to climate change – Climate Res. 17: 183–193.
  • 8. Cha G. 1997 – The impacts of climate change on potential natural vegetation distribution – J. For. Res. 2: 147–152.
  • 9. Chen X., Zhang X.-S., Li B.-L. 2003 – The possible response of life zones in China under global climate change – Global Planetary Change, 38: 327–337.
  • 10. Churkina G., Running S. W. 1998 – Contrasting climatic controls on the estimated productivity of global terrestrial biomes – Ecosystems, 1: 206–215.
  • 11. Cox P. M., Betts R. A., Jones C. D., Spall S. A., Totterdell I. J. 2000 – Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model – Nature, 408: 184–187.
  • 12. Cramer W., Bondeau A., Schaphoff S., Lucht W., Smith B., Sitch S. 2004 – Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation – Phil. Trans. Royal Soc. B: Biological Sciences, 359: 331–343.
  • 13. Cramer W., Bondeau A., Woodward F. I. 2001 – Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models – Global Change Biol. 7: 357–373.
  • 14. Delire C., Foley J. A. 2003 – Evaluating the carbon cycle of a coupled atmosphere-biosphere model – Global Biogeochem. Cycles, 17: 1012, doi:1010.1029/2002GB001870.
  • 15. Desai A. R., Noormets A., Bolstad P. V., Chen J., Cook B. D., Davis K. J., Euskirchen E. S., Gough C., Martin J. G., Ricciuto D. M., Schmidt H., Tang J., Wang W. 2008 – Influence of vegetation and seasonal forcing on carbon dioxide fluxes across the Upper Midwest, USA: Implications for regional scaling – Agric. For. Meteo. 148: 288–308.
  • 16. El Maayar M., Price D. T., Delire C., Foley J. A., Black T. A., Bessemoulin P. 2001 – Validation of the Integrated Biosphere Simulator over Canadian deciduous and coniferous boreal forest stands – J. Geoph. Res. 106 (D13): 14339–14355.
  • 17. Farquhar G. D., Sharkey T. D. 1982 – Stomotal conductance and photosynthesis – Ann. Rev. Plant Physiol. 33: 317–345.
  • 18. Farquhar G. D., von Caemmerer S., Berry J. A. 1980 – A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species – Planta, 149: 78–90.
  • 19. Flato G. M., Boer G. J., Lee W. G., McFarlane N. A., Ramsden D., Reader M. C., Weaver A.J. 2000 – The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate – Clim. Dynam. 16: 451–467.
  • 20. Foley J. A., Colin P. I., Ramankutty N., Levis S., Pollard D., Sitch S., Haxeltine A. 1996 – An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics – Global Biog. Cycles, 10: 603–628.
  • 21. Foley J. A., Costa M. H., Delire C., Ramankutty N., Snyder P. 2003 – Green surprise? How terrestrial ecosystems could affect earth’s climate – Front. Ecol. Environ. 1: 38–44.
  • 22. Friend A. D., Stevens A. K., Knox R. G., Cannell M. G. R. 1997 – A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0) – Ecol. Model. 95: 249–287.
  • 23. Gordon C., Cooper C., Senior C. A., Banks H., Gregory J. M., Johns T. C., Mitchell J. F. B., Wood R. A. 2000 – The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments – Clim. Dynam. 16: 147–168.
  • 24. Haxeltine A., Prentice I. 1996 – BIOME3: an equilibrium biosphere model based on ecophysiological constraints,resource availability and competition among plant functional types - Global Biogeochem. Cycles, 10: 693–709.
  • 25. Hutchinson M.F. 1984 – A summary of some surface fitting and contouring programs for noisy data – CSIRO Division of Mathematics and Statistics, Consulting Report ACT 84/6 Canberra, Australia.
  • 26. Hutchinson M. F., Gessler P. E. 1994 – Splines – more than just a smooth interpolator – Geoderma, 62: 45–67.
  • 27. Ibanez I., Clark J. S., Ladeau S., Lambers J. H. R. 2007 – Exploiting temporal variability to understand tree recruitment response to climate change – Ecol. Monogr. 77: 163–177.
  • 28. IPCC 2007 – Climate Change 2007: Impacts, Adaptation and Vulnerability (In: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller) – Cambridge, United Kingdom and New York, NY, USA.
  • 29. IPCC. 2007. Climate Change 2007: The Physical Science Basis (In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller) – Cambridge, United Kingdom and New York, NY, USA.
  • 30. Ito A. 2008 – The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data – Agricul. For. Meteor. 148: 738–747.
  • 31. Jarvis A., Reuter H. I., Nelson A., Guevara E. 2006 – Hole-filled SRTM for the globe Version 3 – available from the CGIARCSI SRTM 90m Database: http://srtmcsicgiarorg.
  • 32. Ji J., Huang M., Li K. 2008 – Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century – Science in China Series D: Earth Sciences, 51: 885–898.
  • 33. Jiang H., Apps M. J., Peng C., Zhang Y., Liu J. 2002 – Modelling the influence of harvesting on Chinese boreal forest carbon dynamics – For. Ecol. Manag. 169: 65–82.
  • 34. Jiang H., Apps M. J., Zhang Y., Peng C., Woodard P. M. 1999a – Modelling the spatial pattern of net primary productivity in Chinese forests – Ecol. Model. 122: 275–288.
  • 35. Jiang H., Peng C., Apps M. J., Zhang Y., Woodard P. M., Wang Z. 1999b – Modelling the net primary productivity of temperate forest ecosystems in China with a GAP model - Ecol. Model. 122: 255–238.
  • 36. Ju W. M., Chen J. M., Harvey D., Wang S . 2007 – Future carbon balance of China’s forests under climate change and increasing CO2 - J. Environ. Manage. 85: 538–562.
  • 37. Kicklighter D. W., Bruno M., Donges S . 1996 – A first-order analysis of the potetial role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models – Tellus, 51B: 343–366.
  • 38. Kucharik C. J., Barford C. C., Maayar M. E., Wofsy S. C., Monson R. K., Baldocchi D. D. 2006 – A multiyear evaluation of a Dynamic Global Vegetation Model at three AmeriFlux forest sites: Vegetation structure,phenology, soil temperature, and CO2and H2 vapor exchange – Ecol. Model. 196: 1–31.
  • 39. Kucharik C. J., Brye K. R., Norman J. M., Foley J. A., Gower S. T., Bundy L. G. 2001 – Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern wisconsin: potential for SOC sequestration during the next 50 years – Ecosystems, 4: 237–258.
  • 40. Kucharik C.J., Foley J. A., Delire C., Fisher V. A., Coe M. T., Lenters J. D., Young-Molling C., Ramankutty N. 2000 – Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure – Global Biogeo. Cycles, 14: 795–825.
  • 41. Law B. E., Falge E., Gu L. 2002 – Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation – Agricul. For. Meteor. 113: 97–120.
  • 42. Levis S., Foley J. A., Pollard D. 2000 – Large-scale vegetation feedbacks on a doubled CO2 climate – J. Climate, 13: 1313–1325.
  • 43. LevyP. E., Cannell M. G. R., Friend A. D. 2004 – Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink – Global Environ. Change, 14: 21–31.
  • 44. Liang Q. M., Fan Y., Wei Y. M. 2007 – Carbon taxation policy in China: How to protect energy– and trade-intensive sectors? – J. Policy Model. 29: 311–333.
  • 45. Lucht W., Schaphoff S., Erbrecht T., Heyder U., Cramer W. 2006 – Terrestrial vegetation redistribution and carbon balance under climate change – Carbon Balance and Management, doi:10.1186/1750-0680-1-6.
  • 46. Lufafa A., Bolte J., Wright D., Khouma M., Diedhiou I., Dick R. P., Kizito F., Dossa E., Noller J. S. 2008 – Regional carbon stocks and dynamics in native woody shrub communities of Senegal’s Peanut Basin - Agricul. Ecos. Environ. 128: 1–11.
  • 47. Luo T. 1996. Patterns of net primary productivity for Chinese major forest types and their mathematical models – Ph.D. Thesis, Chinese Academy of Sciences, Beijing. (in Chinese).
  • 48. Luyssaert S., Inglima I., Jung M., Richardson, A.D. 2007 – CO2 balance of boreal, temperate, and tropical forests derived from a global database – Global Change Biol. 13: 2509–2537.
  • 49. Matthews H. D., Weaver A. J., Meissner K.J. 2005 – Terrestrial carbon cycle dynamics under recent and future climate change – J. Climate, 18: 1609–1628.
  • 50. Nemani R. R., Keeling C. D., Hashimoto H., Jolly W. M., Piper S.C., Tucker C. J., Myneni R. B., Running S. W. 2003 - Climate-driven increases in global terrestrial net primary production from 1982 to 1999 – Science, 300: 1560–1563.
  • 51. Ni J., Sykes M. T., Prentice I. C., Cramer W. 2000 – Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3 – Global Ecol. Biogeo. 9: 463–479.
  • 52. Parton W. J., Schimel D. S., Cole C. V., Ojima D. S. 1987 – Analysis of factors controlling soil organic matter levels in great plains grasslands – Soil Sci. Soc. Am. 51: 1173–1179.
  • 53. Peng C., Jiang H., Apps M. J., Zhang Y. 2002 – Effects of harvesting regimes on carbon and nitrogen dynamics of boreal forests in central Canada: a process model simulation – Ecol. Model. 155: 177–189.
  • 54. Peng C., Liu J., Dang Q., Apps M. J., Jiang H. 2002 – TRIPLEX: A generic hybrid model for predicting forest growth and carbon and nitrogen dynamics – Ecol. Model. 153: 109–130.
  • 55. Running S. W., Nemani R. R., Heinsch F. A., Zhao M., Reeves M., Hashimoto H. 2004 – A continuous satellite-derived measure of global terrestrial primary production – BioScience, 54: 547–560.
  • 56. Solomon A. M., Cramer W. 1993 – Biospheric implications of global environmental change (In: Vegetation dynamics and global change, Eds: M. Solomon, H.H. Shugart) – Chapman & Hall, New York, USA.
  • 57. Song C., Woodcock C. E. 2003 – A regional forest ecosystem carbon budget model: impacts of forest age structure and landuse history – Ecol. Model. 164: 33–47.
  • 58. Taylor J. A., Lloyd J. 1992 – Source and sinks of atmospheric CO2 - Aust. J. Botany, 40: 407–418.
  • 59. Thompson M. V., Randerson J. T., Malstom C. M., Field C. B. 1996 – Change in net primary production and heterotrophic respiration: how much is necessary to sustain the terrestrial carbon sink? – Global Biogeo. Cycles, 10: 711–726.
  • 60. Tian H., Melillo J. M., Kicklighter D. W., McGuire A.D., Helfrich J. 1999 – The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States – Tellus, 51B: 414–452.
  • 61. Tian H., Melillo J. M., Kicklighter D. W., McGuire A. D., Helfrich III J. V. K., Moore III B., Vörösmarty C. J. V. R. 1998 – Effect of interannual climate variabilityon carbon storage in Amazonian ecosystems – Nature, 396: 664–667.
  • 62. Tian H., Melillo J. M., Kicklighter D. W., Pan S., Liu J., McGuire A. D., Moore III B. 2003 – Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle – Global Planetary Change, 37: 201–217.
  • 63. Tschaker, P., Huber-Sannwald E., Ojima D. S., Raupach M. R., Schienke E. 2008 – Holistic, adaptive management of the terrestrial carbon cycle at local and regional scales – Global Environ.l Change, 18: 128–141.
  • 64. Urbanski S., Barford C., Wofsy S., Kucharik C., Pyle E., Budney J., McKain K., Fitzjarrald D., Czikowsky M., Munger J.W. 2007 – Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest – J. Geoph. Res. 112: G02020, doi:02010.01029/02006JG000293.
  • 65. Verberne E. L., Hassink J., De Willigen P., Groot J.J.R. 1990 – Modelling organic matter dynamics in different soils – Netherl. J. Agricul. Sci. 38: 221–238.
  • 66. Weng E.-S. and Zhou G.-S. 2006 – Modeling distribution changes of vegetation in Chi-na under future climate change – Environm. Model. Assess. 11: 45–58.
  • 67. White A., Cannell M. G. R., Friend A. D. 1999 – Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment – Global Environ. Change, 9: S21–S30.
  • 68. White A., Cannell M. G. R., Friend A. D. 2000 – The high-latitude terrestrial carbon sink: a model analysis – Global Change Biol. 6: 227–245.
  • 69. Wiedinmyer C., Neff J. C. 2007 – Estimates of CO2 from fires in the United States: implications for carbon management – Carbon Balance and Management, 10: 2.
  • 70. Zhang J., Chu Z., Ge Y., Zhou X., Jiang H., Chang J., Peng C., Zheng J., Jiang B., Zhu J., Yu S. 2008 – TRIPLEX model testing and application for predicting forest growth and biomass production in the subtropical forest zone of China’s Zhejiang Province – Ecological Modelling, 219: 264-275
  • 71. Zhang J., Ge Y., Chang J., Jiang B., Jiang H., Peng C. H., Zhu J. R., Yuan W.G., Qi L. Z., Yu S. Q. 2007 – Carbon storage by ecological service forests in Zhejiang Province, subtropical China – For. Ecol. Manage. 245: 64–75.
  • 72. Zhao M. 2002 – Modelling the vegetation of China under changing climate (in Chinese) – Acta Geograph. Sini. 57: 28–38.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3205-2387
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.