Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 61, nr 3-4 | 171-193
Tytuł artykułu

Numerical modelling of the opening process of the three-coating aortic valve

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Solid Mechanics Conference (36 ; 9-12.09.2008 ; Gdańsk, Poland)
Języki publikacji
Numerical modelling of the three-coating human aortic valve is the objective of the paper. The proposed approach is used to select the material properties and the thickness of outer coating of the valve, which are required to obtain the proper work of the valve, which in the present paper is considered as the opening process. Following the previously developed model of the monocoating lea?et of the natural human aortic valve, the model of three-coating valve is prepared. Finite element method (FEM) and sensitivity analysis are used to solve the formulated and selected problems. Two methods of estimation of the valve opening process in numerical models are elaborated on the basis of experimental studies.

Opis fizyczny
Bibliogr. 23 poz.
  • 1. M. KOPERNIK, D. SZELIGA, J. NOWAK, Modelling of mechanical response of leaflet of aortic valve based on the sensitivity analysis of geometry and material parameters, Proc. XVIIth CMM, K. DEMS [Ed.], Lodz-Spala, CD ROM 1-5, 2007.
  • 2. D.N. GHISTA, H. REUL, Prosthetic aortic leaflet valve design: performance analysis of Avcothane leaflet valve, Advance Cardiovascular Physiology, 5, 31-42, 1983.
  • 3. L. MULLER, Theory of mechanical similarity [in Polish], Wydawnictwa NaukowoTech-niczne, Warszawa 1961.
  • 4. K.S. KUNZELMAN, K,J, GRANDE, T.E. DAVID, Aortic root and valve relationships, J. Thoracic Cardiovascular Surgery, 107, 162-170, 1994.
  • 5. K, FURUKAWA, H. OHTEKI, Z.-L. CAO, K, Doi, Y. NARITA, N. MINATO, T. ITOH, Does dilatation of the sinotubular junction cause aortic regurgitation? The Annals of Thoracic Surgery, 68, 949-954, 1999.
  • 6. J. Li, X,Y, Luo, Z,B. KUANG, A nonlinear anisotropic model for porcine aortic heart valves, J. Biomechanics, 34, 1279-1289, 2001.
  • 7. Z, NAWRAT, Z, MALOTA, M. KOPERNIK, The biological valve prostheses hemodynamic parameter estimation for different type of valve defects 'modeling, Proc. IVth Symposium on Medical Physics, Proc. Ilnd International Symposium on Medical Physics, Ustrori, 103, 2003.
  • 8. M. NAŁĘCZ, Artificial organs [in Polish], Akaclemicka Oficyna Wydawnicza Exit, War-szawa 2001.
  • 9. W. FLUGGE, Handbook of Engineering Mechanics, McGraw-Hill, N.Y. 1962.
  • 10. M.R. LABROSSE, C.J. BELLER, F. ROBICSEK, M.J. THUBRIKAR, Geometric modeling of functional trileaflet aortic valves: Development and clinical applications, J. Biomechanics, 39, 2665 2672, 2006.
  • 11. R. STRADINS, L. ROMANS, I. OZOLATA, B. PURINA, V. OSE, L. FELDMANE, V. KASY-ANOV, Comparison of biomechanical and structural properties between human aortic and pulmonary valve, European Journal of Cardio-thoracic Surgery, 26, 634-639, 2004.
  • 12. G.M. BERNACCA, B. O'CONNOR, D.F. WILLIAMS, D.J. WHEATLEY, Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young's modulus and leaflet thickness, Biomaterials, 23, 45-50, 2002.
  • 13. M. PASZYNSKI, M. KOPERNIK, L. MADEJ, M. PIETRZYK, Automatic hp adaptivity to improve accuracy of modeling of heat transport and linear elasticity problems, J. Machine Engineering, 6, 73-82, 2006.
  • 14. M. KOPERNIK, M. PIETRZYK, Evaluation of possibilities and perspectives of application of nanomaterial hard coatings, Computer Methods in Materials Science, 6, 42-63, 2006.
  • 15. R. GNYANEHWAR, R.K. KUMAR, K.P. BALAKRISHNAN, Dynamic analysis of the aortic valve using a finite element model, Ann. Thorac. Sur., 73, 1122-1129, 2002.
  • 16. D. SZELIGA, Sensitivity analysis - methods and applications [in Polish], Computer Methods in Materials Science, 5, 170-179, 2005.
  • 17. J.M. LACKNER, Industrially-scaled hybrid Pulsed Laser Deposition at room temperature, Orekop, Krakow 2005.
  • 18. X.CAI, H. BANGERT, Finite-element analysis of the interface influence on hardness measurements films, Surf. Coat. Technol., 81, 240-255, 1996.
  • 19. A.R. FRANCO, G. PINTAUDE, A. SINATORA, C.E. PINEDO, A.P. TSCHIPTSCHIN, The use of a Vickers indenter in depth sensing indentation for measuring elastic modulus and Vickers hardness, Materials Research, 7, 483-491, 2004.
  • 20. H.F. WANG, H. BANGERT, Three-dimensional finite element simulation of Vickers indentation on coated systems, Mat. Sci. Eng., 163, 43-50, 1993.
  • 21. K.D. BOUZAKIS, J. ANASTOPOULOS, A. ASIMAKOPOULOS, N. MICHAILIDIS, G. ERKENS, Wear development of cemented carbide inserts coated with mono and multilayer PVD films, considering their strength properties, adhesion and the cutting loads, Surface and Coatings Technology, 201, 4395-4400, 2006.
  • 22. P.C. JINDAL, A.T. SANTHANAM, U. SCHLEINKOFER, A.F. SHUSTER, Performance of PVD TiN, TiCN, and TiAIN-coated, cemented carbide tools in turning. International Journal of Refractory Metals and Hard Materials, 17, 163-170, 1999.
  • 23. B.D. BEAKE, N. RANGANATHAN, An investigation of the nanoindentation and nano/mi-cro-tribological behaviour of monolayer, bilayer and trilayer coatings on cemented carbide, Mat. Sci. Eng., 23, 46-51, 2006.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.