Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 60, nr 5 | 385-401
Tytuł artykułu

Some exact solutions for the rotational flow of a generalized second-grade fluid between two circular cylinders

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
The velocity field and the associated tangential stress corresponding to the flow of a generalized second-grade fluid between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. At time t=0, the fluid is at rest and at t=0+ the cylinders suddenly begin to rotate about their common axis with a constant angular acceleration. The solutions that have been obtained satisfy the governing differential equations and all the imposed initial and boundary conditions. The similar solutions for a second-grade fluid and Newtonian fluid are recovered from our general solutions. The influence of the fractional coefficient on the velocity of the fluid is also analyzed by graphical illustrations.

Opis fizyczny
Bibliogr. 24 poz.
  • 1. M. CAPUTO, F. MAINARDI, A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91, 134-147, 1971.
  • 2. G.L. SLONIMSKY, On the law of deformation of highly elastic polymeric bodies, Dokl. Akad. Nauk BSSR, 140, 343-346, 1961.
  • 3. M. STIASSNIE, On the application of fractional calculus for the formulation of viscoelastic models, Appl. Math. Modell., 3, 300-302, 1979.
  • 4. F. MAINARDI, Applications of fractional calculus in mechanics, Transform Methods and Special Functions, Varna'96, P. RUSEV, I. DlMOVSCHi and V. KlRYAKOVA [Eds.], Bulgarian Academy of Sciences, Sofia, 309-334, 1998.
  • 5. R.L. BAGLEY, P.J. TORVIK, A theoretical basis for the application of fractional calculus to viscoelastisity, J. Rheol., 27, 201-210, 1983.
  • 6. R.L. BAGLEY, P.J. TORVIK, On the fractional calculus model of viscoelastic behavior, J. Rheol., 30, 133-155, 1986.
  • 7. L. ROGERS, Operators and fractional derivatives for viscoelastic constitutive equations, J. Rheol., 27, 351-371, 1983.
  • 8. R.C. KOELLER, Applications of fractional calculus to the theory of viscoelasticity, Trans. ASME J. Appl. Mech., 51, 2, 299-307, 1984.
  • 9. M. Xu, W. TAN, Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion, Science in China, Ser. A, 44, 11, 1387-1399, 2001.
  • 10. M. Xu, W. TAN, The representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions, Science in China, Ser. G 46 (2), 145-157, 2003.
  • 11. L. DEBNATH, Recent applications of fractional calculus to science and engineering. Int. J. Math, and Math. Sci., 54, 3413-3442, 2003.
  • 12. P.E. ROUSE, The theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J. Chern. Phys., 21, 1272-1280, 1953.
  • 13. J.D. FERRY, R.F. LANDEL, M.L. WILLIAMS, Extensions of the Rouse theory of viscoelastic properties to undiluted linear polymers, J. Appl. Phys., 26, 359-362, 1955.
  • 14. K.R. IlAJAGOPAL, A note on unsteady unidirectional flows of a non-Newtonian fluid, Int. J. Non-Linear Mech., 17, 369-371, 1982.
  • 15. C. FETECAU, CORINA FETECAU, Starting solutions for the motion of a second grade fluid due to longitudinal and torsional oscillations of a circular cylinder, Int. J. Eng. Sci., 44, 788-796, 2006.
  • 16. J.E. DUNN, K.R. RAJAGOPAL, Fluid of differential type: critical review and thermody-namic analysis, Int. J. Eng. Sci., 33, 689-728, 1995.
  • 17. R. HiLFER, Applications of Fractional Calculus in Physics, World Scientific Press, Singapore 2000.
  • 18. W.C. TAN, M.Y. Xu, The impulsive motion of the flat plate in a generalized second grade fluid, Mech. Res. Comm., 29, 3-9, 2002.
  • 19. M.KHAN, S. NADEEM, T. HAYAT, A. M. SIDDIQUI, Unsteady motion of a generalized second grade fluid, Math. Cornput. Model!., 41, 629-637, 2005.
  • 20. C.FETECAU, CORINA FETECAU, D. VIERU, On some helical flows of Oldroyd-B fluids, Acta Mech., 189, 53-63, 2007.
  • 21. D. TONG, Y. Liu, Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe, Int. J. Eng. Sci., 43, 281-289, 2005.
  • 22. C.FETECAU, A. MAHMOOD, CORINA FETECAU, D. VIERU, Some exact solutions for the helical flow of a generalized Oldroyd-B fluid in a circular cylinder, Comp. & Appl. Math., doi: 10.1016/j.camwa. 2008.07.003.
  • 23. C.F. LORENZO, T.T. HARTLEY, Generalized Functions for the Fractional Calculus, NASA/TP-1999-209424/Revl, 1999.
  • 24. L. DEBNATH, D. BHATTA, Integral Transforms and Their Applications (Second Edition), Chapman & Hall/CRC, 2007.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.