Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 59, nr 1 | 59-89
Tytuł artykułu

On the phenomenological representation of curing phenomena in continuum mechanics

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
To simulate curing phenomena, for example for the purpose of optimising the manufacturing processes or to calculate the stress distribution in adhesive seams, constitutive models representing the thermomechanically-coupled behaviour of adhesives are required. During the curing reaction, the adhesive changes its thermomechanical material behaviour from a viscous fluid to a viscoelastic solid. This phase transition is an exothermal chemical reaction which is accompanied by thermal expansion, chemical shrinkage and changes in temperature. In this essay we develop a physically-theory of finite strain thermoviscoelasticity to represent these phenomena. To this end, we introduce a multiplicative split of the deformation gradient into a thermal, a chemical and a mechanical part. We define the coordinate of chemical reaction determined by an evolution equation to describe the temporal behaviour of the curing reaction. The energy of the model contains an additional term, the chemically-stored free energy, which depends on this internal variable. The mechanical behaviour of the adhesive is modelled using a constitutive approach of finite thermoviscoelasticity and the viscosities are functions of the coordinate of chemical reaction. We show that the model is compatible with the Clausius-Duhem inequality, derive the equation of heat conduction and illustrate the physical properties of the theory by a numerical example.

Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
  • Institute of Mechanics, Faculty of Aerospace Engineering University of the Federal Armed Forces Munich 85577 Neubiberg, Werner-Heisenberg-Weg 39, Germany
  • 1. R. AKKERMAN, H.W. WIERSMA, L.J.B. PEETERS, Spring-forward in continuous fibre-reinforced thermosets, Simulation of Materials Processing: Theory, Methods and Applications: Numiform'98, J. Huetink, F.T.P. Baaijens, Balkema, Rotterdam, 71-476, 1998.
  • 2. A.F.M.S. AMIN, A. LION, S. SEKITA, Y. OKUI, Nonlinear dependence of viscosity in modeling rate-dependent response of natural and high-damping rubbers in compression and shear: experimental identification and numerical verification, International Journal of Plasticity, 22, 1619-1657, 2006.
  • 3. P.W. ATKINS, Physikalische Chemie, VCH Verlagsgesellschaft Weinheim, Germany, 1988.
  • 4. D. BESDO, J. Ihlemann, A phenomenological constitutive model for rubberlike materials and its numerical applications, Int. Journal of Plasticity, 19, 1019-1036, 2003.
  • 5. T. BOGER, K. DILGER, G. SCHMOLLER, FE-Simulation der Klebstoffschwindung wahrend des Aushdrtevorgangs, Klcben und Dichten, 10, page number not available, 2001.
  • 6. M.C. BOYCE, D.M. PARKS, A.S. ARGON, Plastic flow in oriented glassy polymers, International Journal of Plasticity, 5, 593-615, 1989.
  • 7. L.J. ERNST, C. VAN 'T HOP, D.G. YANG, M.S. KIASAT, Determination oj viscoelastic properties during the curing process of underfill materials, Electronics Components and Technology Conference, IEEE, 2000.
  • 8. S. GERLACH, M. FIOLKA, A. MATZENMILLER, Modelling and analysis of adhesively bonded joints with interface elements for crash analysis, Proceedings of the LS-DYNA Conference, Bainberg 2005.
  • 9. B. GROSS, Mathematical structure of the theories of linear viscoelasticity, Hermann Press, Paris, 1968.
  • 10. O. HAHN, J. JENDRY, R. MAHNKEN, Simulation der Fugeteilverformung wdhrend der Warmaushdrtung von Klebstoffen: Modellierung und experimentelle Untersuchungen an einem Schiebedachdeckel, 22-nd CADFEM User Meeting, International Congress on FEM Technology with ANSYS CFX & ICEM CFD Conference, 2004.
  • 11. P. HAUPT, C. TSAKMAKIS, On the application of dual variables in continuum mechanics, Continuum Mechanics and Thermodynamics, 1, 165-196, 1989.
  • 12. P. HAUPT, A. LION, On finite linear viscoelasticity of incompressible isotropic materials, Acta Mechanica, 159, 87-124, 2002.
  • 13. P. HAUPT, Continuum mechanics and theory of materials, Springer Ltd., 2000
  • 14. K. HUTTER, The foundations of thermodynamics, its basic postulates and implications: a review article, Acta Mechanica, 27, 1-54, 1977.
  • 15. T. HEIMES, Finite Thermoinelastizitdt: Experiments, Materialmodellierung und Imple-mentierung in die FEM am Beispiel einer technischen Gummimischung, Doctoral thesis, University of the Federal Armed Forces, Miinch 2005.
  • 16. A. KHAN, H. ZHANG, Finite deformation of a polymer: experiments and modeling, International Journal of Plasticity, 17, 1167-1188, 2001.
  • 17. M.S. KIASAT, Curing shrinkage and residual stresses in viscoelastic thermosetting resins and composites, Doctoral thesis, Delft University of Technology, Netherlands, 2000.
  • 18. Y.K. KIM, S.R. WHITE, Stress relaxation behaviour of 3501-6 epoxy resin during cure, Polymer Engineering and Science, 36, 2852-2862, 1996.
  • 19. H. KIM, K. CHAR, Dielectric changes during the curing of epoxy resin based on diglycidyl ether of bisphenol A (DGEBA) with diamine, Bulletin of the Korean Chemical Society, 20, 1329 1334, 1999.
  • 20. J. KIM, T.J. MOON, J.R. HOWELL, Cure kinetic model, heat of reaction and glass transition temperature of AS4/3501-6 Graphite-Epoxy Prepregs, Journal of Composite Materials, 36, 2479-2498, 2002.
  • 21. L. LAIARINANDRASANA, R., PIQUES, A., ROBISSON, Visco-hyperelastic model with internal state variable coupled with discontinuous damage concept under total Lagrangian formulation, International Journal of Plasticity, 19, 977-1000, 2003.
  • 22. A. LION, C. KARDELKY, The Payne effect infinite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales, International Journal of Plasticity, 20, 1313-1345, 2004.
  • 23. A. LION, Constitutive modelling infinite thermoviscoplasticity: A physical approach based on nonlinear rheological elements, International Journal of Plasticity, 16, 469-494, 2000.
  • 24. A. LION, On the large deformation behaviour of reinforced rubber at different temperatures, Journal of the Mechanics and Physics of Solids, 45, 1805-1834, 1997.
  • 25. S.C.H. Lu, K.D. PISTER, Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids, Int. J. Solids and Structures, 11, 927-934, 1975.
  • 26. R, MAHNKBN, Simulation of strength difference for adhesive materials in finite deformation elastoplasiicity, Computer Methods in Applied Mechanics and Engineering, 194, 4097-4114, 2005.
  • 27. R, MAHNKEN, M, SCHLIMMER, Simulation of strength difference for adhesive materials, International Journal for Numerical Methods in Engineering, 63, 1461-1477, 2005.
  • 28. C. MIEHE, J, KECK, Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers, Journal of the Mechanics and Physics of Solids, 48, 323-365, 2000,
  • 29. D.J, O'BRIEN, P.T. MATHER, A.R., WHITE, Viscoelastic properties of an epoxy resin during cure, Journal of Composite Materials, 35, 883-904, 2001.
  • 30. H.C. PARK, S.W. LEE, Cure simulation of thick composite structures using the finite element method. Journal of Composite Materials, 35, 188-201, 2001.
  • 31. S. REESE, S. GOVINDJEE, Theoretical and numerical aspects in the thermoviscoelastic material behaviour of rubber-like polymers, Mech. Time-dependent Materials, 1, 357-396, 1998,
  • 32. S, REESE, A micromechanically motivated material model for the thermoviscoelastic material behaviour of rubber-like polymers, International Journal of Plasticity, 19, 909-940, 2003,
  • 33. E. Ruiz, F. TROCHU, Thermomechanical properties during cure of glass polyester RTM composites; elastic and viscoelastic modelling, J. Composite Materials, 39, 881-916, 2005.
  • 34. R. SEIFFI, M, HOJJATI, Heat of reaction, cure kinetics and viscosity of Araldite LY-556, Journal of Composite Materials, 39, 1027-1039, 2005.
  • 35. G. SCHMOELLER, Simulation des thermomechanischen Verhaltens verklebter Bauteile aus kurzfaserverstdrkten Thermoplasten, Doctoral thesis, Technical University Munich, 1998.
  • 36. S.L, SIMON, G,B. McKENNA, O, SINDT, Modelling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation, Journal of Applied Polymer Science, 76, 495-508, 2000.
  • 37. K. SUZUKI, Y, MIYANO, T. KUNIO, Change of viscoelastic properties of epoxy resin in the curing process, Journal of Applied Polymer Science, 21, 3367-3379, 1977.
  • 38. N. TSCHOEGL, The phenomenological theory of linear viscoelastic material behaviour, Springer Ltd, 1989.
  • 39. M. WENZEL, Spannungsbildung und Relaxationsverhalten bei der Aushdrtung von Epox-idharzen, Doctoral thesis, Technical University of Darmstadt, 2005.
  • 40. S.R. WHITE, P.T. MATHER, M.J. SMITH, Characterization of the cure state of DGEBA-DDS epoxy using ultrasonic, dynamic mechanical and thermal probes, Polymer Engineering and Science, 42, 51-67, 2002.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.