Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 59, nr 1 | 35-58
Tytuł artykułu

Functional forms of hardening internal state variables in modeling elasto-plastic behavior

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
In this work use is made of functional forms of hardening state variables within a consistent thermodynamic formulation to model the elasto-plastic behavior of materials. The formulation is then numerically implemented using the developed plasticity model. In deriving the constitutive model, a local yield surface is used to determine the occurrence of plasticity. Isotropic hardening and kinematic hardening are incorporated as state variables to describe the change of the yield surface. The hardening conjugate forces (stress-like terms) are general nonlinear functions of their corresponding hardening state variables (strain-like terms) and can be defined basing on the desired material behavior. Various exponential and power law functional forms are studied in this formulation. The paper discusses the general concept of using such functional forms; however, it does not address the relevant appropriateness of certain forms to solve different problems. It is shown that, depending on the functions used, standard models known from the literature can be recovered. The use of this formulation in solving boundary value problems will be presented in future.

Opis fizyczny
Bibliogr. 17 poz.
  • Department of Civil and Environmental Engineering Louisiana State University Baton Rouge, LA 70803 USA
  • 1. P.J. ARMSTRONG and C.O. FREDERICK, A mathematical representation of the multiaxial Bauschinger effect, CEGB Report RD/B/N/731, Berkeley Laboratories, R and D Department, CA. 1966.
  • 2. T. BELYTSCHKO, W.K. Liu, and B. MORAN, Nonlinear finite elements for continua and structures, John Wiley and Sons Ltd, New York 2000.
  • 3. J.-L. CHABOCHE, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, International Journal of Plasticity, 5, 247-302, 1989.
  • 4. O. COUSSY, Mechanics of porous continua, John Wiley and Sons Ltd, New York 1995.
  • 5. R.J. DORGAN and G.Z. VOYIADJIS, A mixed finite element implementation of a gradient enhanced coupled damage-plasticity model. International Journal of Damage Mechanics, 15, 201-235, 2006.
  • 6. I. DOGHRI, Fully implicit integration and consistent tangent modulus in elasto-plasticity, International Journal for Numerical Methods in Engineering, 36, 3915-3932, 1993.
  • 7. I. DOGHRI, Mechanics of deformable solids: linear and nonlinear, Analytical and Computational Aspects, Springer, Germany 2000.
  • 8. R. HILL, The mathematical theory of plasticity, Oxford 1950.
  • 9. H. KUHN and A. TUCKER, Nonlinear programming Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probabilistics, University of California Press, 481-492, 1951.
  • 10. J. LEMAITRE and J.-L. CHABOCHE, Mechanics of solid materials, Cambridge University Press, London 1994.
  • 11. L.E. MALVERN, Introduction to the mechanics of a continuous medium, Prentice-Hall, Inc., New Jersey 1969.
  • 12. E. OROWAN, Zur Kristallplastizitdt III: Uber die Mechanismus des Gleitvorganges, Zeitschrift fur Physik, 89, 634-659, 1934.
  • 13. M. POLANYI, Uber eine Art Gitterstorung, die einem Kristall plastisch machen konnte, Zeitschrift fur Physik, 89, 660-664, 1934.
  • 14. W. PRAGER, A new method of analyzing stresses and strains in work-hardening plastic solids, Journal of Applied Mechanics, ASME, 23, 493-496, 1956.
  • 15. J.C. SIMO and T.J.R. HUGHES, Computational Inelasticity, Springer-Verlag, New York 1998.
  • 16. G.I. TAYLOR, The mechanism of plastic deformation of crystals, I. theoretical, Proceedings of the Royal Society A, 145, 362-387, 1934.
  • 17. G.Z. VOYIADJIS and R.J. DORGAN, A gradient enhanced, generalized plasticity/damage model: Rigorous mathematical formulation and finite element implementation, Journal of the Mechanical Behavior of Materials, 15, 4-5, 309-340, 2004.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.