Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 14, no 2-3 | 43-50
Tytuł artykułu

Signature recognition method by means of the windows technique

Warianty tytułu
Języki publikacji
This study presents a new method of determining the similarity of signatures. The method described in this paper allows comparing signatures with the use of any similarity coefficient, without the necessity of using additional algorithms equalizing the lengths of the sequences being compared. The proposed method consists in dividing the signatures into windows with a given size and calculating the value of similarity between individual windows. The performed studies took into account selected similarity coefficients, known from the literature, and different parameters of the method. In addition, there was determined the usability of individual similarity coefficients, taking into account different features of signatures.

Opis fizyczny
Bibliogr. 15 poz., rys.
  • [1] M. Adamski, K. Saeed, Offline signature identification and verification using non-iterative shape context algorithm, Journal of Medical Informatics and Technologies, vol. 13, pp. 47-53, 2009
  • [2] A. I. Al-Shoshan, Handwritten Signature Verification Using Image Invariants and Dynamic Features, International Conference on Computer Graphics, Imaging and Visualisation, (CGIV’06), pp. 173-176, 2006
  • [3] S. Cha, Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. International Journal of Mathematical Models and Methods in Applied Sciences, vol. 1(4), pp. 300-307, 2007
  • [4] R. Doroz, P. Porwik, T. Para, K. Wrobel, Dynamic signature recognition based on velocity changes of some features. International Journal of Biometrics, vol. 1, no. 1, pp. 47-62, 2008
  • [5] R. Doroz, K. Wrobel, Method of Signature Recognition with the Use of the Mean Differences, 31st International IEEE Conference on Information Technology Interfaces (ITF09) (In print), 2009
  • [6] A. El Yacoubi, M. Gilloux, R. Sabourin, C. Y. Suen, Unconstrained Hand Written Word Recognition using Hidden Markov Models, IEEE Transation on Pattern Analysis and Machine Intelligence, vol. 2, no. 8, pp. 752-760, 1999
  • [7] K. Huang, H. Yan, Off-line Signature Verification Based on Geometric Feature Extraction and Neural Netwrok Classification, Pattern Recognition, vol. 30, no. 1, pp.9-17, 1997
  • [8] S. Impedovo, G. Pirlo, Verification of Handwritten Signatures: an Overview, 14th International Conference on Image Analysis and Processing (ICIAP’07), pp. 191-196, 2007
  • [9] N. S. Kamel, G. A. Ellis, S. Sayeed, Glove-based approach to online signature verification. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30 no. 6, pp. 1109-1113, 2008
  • [10] J. N. K. Liu, G. S. K. Fung, Signature verification based on a fuzzy genetic algorithm, Source, International Series On Computational Intelligence archive, Knowledge-based intelligent techniques in character recognition book contents, CRC Press, pp. 121-148, 1999
  • [11] A. Piyush Shankera, A. N. Rajagopalan, Off-line signature verification using DTW, Pattern Recognition Letters, vol. 28, pp. 1407-1414, 2007
  • [12] P. Porwik, The Compact Three Stages Method of the Signature Recognition, 6th International IEEE Conference on Computer Information Systems and Industrial Management Applications (CISIM’07), pp. 282-287, 2007
  • [13] T. M. Rath, R. Manmatha, Word Image Matching using Dynamic Time Warping, IEEE Conference on Computer Vision and Pattern Recognition, pp. 521-527, 2003
  • [14] K. Wrobel, R. Doroz, The new method of signature recognition based on least squares contour alignment, International IEEE Multi-Conference on Biometrics and Kansei Engineering (ICBAKE’09), pp. 80-83, 2009
  • [15] P. Porwik, K. Wrobel, R. Doroz, A New Method of Handwritten Signature Recognition Based on Different Similarity Measures, In Book: Image Processing & Communications Challenges, Ed. Ryszard S. Choraś and Antoni Zabłudowski, Academy Publishing House EXIT, Warsaw 2009, pp.278-285.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.