PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | Vol. 57, nr 6 | 455--477
Tytuł artykułu

Damage and fracture of brittle materials subjected to tri-axial compression

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to present the experimental and theoretical study of fracture of brittle materials. To this end, new and more complete experimental data on deformability and fracture of brick and mortar subjected to tri-axial state of stress were discussed. Such experimental data are necessary to formulate the theoretical models capable of describing the mechanical behaviour of concrete, cementitious composites, ceramics and rocks. The second objective of this study is to present the potentialities of our own phenomenological model, based on continuum damage mechanics and on the theory of tensor function representation. Comparison of the experimental results obtained for tri-axial compression of brick and mortar with respective theoretical predictions showed satisfactory agreement.
Wydawca

Rocznik
Strony
455--477
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
  • Universidade da Beira Interior, Departamento de Engenharia Civil, Covilhã, Portugal , litewka@ubi.pt
autor
  • Silesian University of Technology, Department of Civil Engineering, Gliwice, Poland
Bibliografia
  • 1. M. Basista, Micromechanical and lattice modeling of brittle damage, IFTR Reports, 3/2001, Warsaw 2001.
  • 2. J. Betten, Damage tensors in continuum mechanics, J. Méch. Théor. Appl., 2, 1, 13–32, 1983.
  • 3. J. Betten, Anwendungen von Tensorfunktionen in der Kontinuumsmechanik anisotroper Materialen, Z. Angew. Math. Mech., 78, 8, 507–521, 1998.
  • 4. J.P. Boehler, Applications of tensor functions in solid mechanics, Springer-Verlag, Wien 1987.
  • 5. J. Bogucka, J. Dębiński, A. Litewka, A.B. Mesquita, Experimental verification of mathematical model for oriented damage of concrete, Mecânica Experimental, 3, 11–18, 1998.
  • 6. F.C.S. Carvalho, C.N. Chen, J.F. Labuz, Measurements of effective elastic modulus and microcrack density, Int. J. Rock. Mech. Min. Sci., 34, Paper No. 043, 1997.
  • 7. J.L. Chaboche, P.M. Lesne, J.F. Maire, Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites, Int. J. Damage Mech., 4, 5–22, 1995.
  • 8. W.F. Chen, Plasticity of reinforced concrete, McGraw-Hill, New York 1982.
  • 9. N.D. Cristescu, U. Hunsche, Time effects in rock mechanics, John Wiley & Sons, Chichester 1998.
  • 10. W. Derski, R. Izbicki, I. Kisiel, Z. Mróz, Rock and soil mechanics, Elsevier-P.W.N., Amsterdam-Warsaw 1989.
  • 11. A. Dragon, On phenomenological description of rock-like materials with account for kinetics of brittle fracture, Arch. Mech., 28, 1, 13–30, 1976.
  • 12. B.F. Dyson, D. McLean, Creep of Nimonic 80A in torsion and tension, Met. Sci., 11, 2, 37–45, 1977.
  • 13. C. Ehm, U. Schneider, Biaxial testing of reactor concrete, [in:] Trans. 8th Int. Conf. Structural Mechanics in Reactor Technology, North Holland, Vol. H, 349–354, Amsterdam 1985.
  • 14. C. Eimer, Rheological strength of concrete in the light of damage hypothesis [in Polish], Arch. Civil Eng., 17, 1, 15–31, 1971.
  • 15. R.E. Goodman, Introduction to rock mechanics, John Wiley & Sons, New York 1989.
  • 16. D. Halm, A. Dragon, A model of anisotropic damage by mesocrack growth; unilateral effect, Int. J. Damage Mech., 5, 4, 384–402, 1996.
  • 17. D. Halm, A. Dragon, An anisotropic model of damage and frictional sliding for brittle materials, Eur. J. Mech., A/Solids, 17, 3, 439–460, 1998.
  • 18. D.R. Hayhurst, Creep rupture under multi-axial states of stress, J. Mech. Phys. Solids, 20, 381–390, 1972.
  • 19. D.R. Hayhurst, On the role of creep continuum damage in structural mechanics, in: Engineering Approaches to High Temperature Design, eds. B. Wilshire, D.R.J. Owen, Pineridge Press, Swansea 1983, 85–175.
  • 20. H. Horii, S. Nemat-Nasser, Overall moduli of solids with microcracks: load-induced anisotropy, J. Mech. Phys. Solids, 31, 2, 155–171, 1983.
  • 21. J.W. Ju, On two-dimensional self-consistent micromechanical damage models for brittle solids, Int. J. Solids Struct., 27, 227–258, 1991.
  • 22. D. Krajcinovic, Continuum damage mechanics: when and how?, Int. J. Damage Mech., 4, 3, 217–229, 1995.
  • 23. D. Krajcinovic, M. Basista, D. Sumarac, Micromechanically inspired phenomenological damage model, J. Appl. Mech., 58, 305–310, 1991.
  • 24. H. Kuna-Ciskał, J. Skrzypek, CDM based modeling of damage and fracture mechanisms in concrete under tension and compression, Eng. Fracture Mech., 18, 681–698, 2002.
  • 25. H. Kupfer, Das Verhalten des Betons unter mehrachsiger Kurzzeitbelastung unter besonderer Berücksichtigung der zweiachsiger Beanspruchung, [in:] Deutsher Ausschluss für Stahlbeton, 229. Wilhelm Ernst & Sohn, 1–105, Berlin 1973.
  • 26. F.A. Leckie, E.T. Onat, Tensorial nature of damage measuring internal variables, [in:] Physical Non-Linearities in Structures, J. Hult, J. Lemaitre [Eds.], Springer-Verlag, 140–155, Berlin 1981.
  • 27. J. Lemaitre, How to use damage mechanics, Nucl. Eng. Design, 8, 233–245, 1984.
  • 28. W. Ligęza, Experimental stress-strain relationship for cement concrete under biaxial compression, in: Proceedings of the International Conference Concrete and Concrete Structures, 47–54, Zilina 1999.
  • 29. A. Litewka, Effective material constants for orthotropically damaged elastic solid, Arch. Mech., 37, 6, 631–642, 1985.
  • 30. A. Litewka, Creep rupture of metals under multi-axial state of stress, Arch. Mech., 4l, 1, 3-23, 1989.
  • 31. A. Litewka, J. Bogucka, J. Dębiński, Deformation-induced anisotropy of concrete, Arch. Civil Eng., 42, 4, 425–445, 1996.
  • 32. A. Litewka, J. Bogucka, J. Dębiński, Application of oriented damage theory in mechanics of concrete, [in:] Proc. of. 3rd International Conference on Analytical Models and New Concepts in Mechanics of Concrete Structures, M. Kamiński [Ed.], Oficyna Wyd. Politechniki Wrocławskiej, Wrocław 1999, 159–166.
  • 33. A. Litewka, J. Bogucka, J. Dębiński, Anisotropic behaviour of damaged concrete and fibre reinforced concrete, in: Anisotropic Behaviour of Damaged Materials, J. Skrzypek, A. Ganczarski [Eds.], Springer Verlag, 185–219, Berlin-Heidelberg 2003.
  • 34. A. Litewka, J. Dębiński, Damage-induced anisotropy and deformability of brittle rocklike materials, Key Eng. Materials, 230-232, 505–508, 2002.
  • 35. A. Litewka, J. Dębiński, Load-induced oriented damage and anisotropy of rock-like materials, Int. J. Plast., 19, 2171–2191, 2003.
  • 36. A. Litewka, L. Szojda, Tri-axial tests for brittle materials: motivation, technique, results, Civil Env. Eng. Reports, 1, 169–188, 2005.
  • 37. S. Majewski, Mechanics of structural concrete in terms of elasto-plasticity [in Polish], Wyd. Politechniki Śląskiej, Gliwice 2003.
  • 38. V.P. Mitrofanov, O.A. Dovzenko, Development of deformation induced anisotropy of concrete under uni-axial compression [in Russian], Beton Zelezobeton, 10, 9–11, 1991.
  • 39. S. Murakami, Progress in continuum damage mechanics, J.S.M.E. Int. Journal, 30, 701–710, 1987.
  • 40. S. Murakami, K, Kamiya, Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics, Int. J. Mech. Sci., 39, 4, 473–486, 1997.
  • 41. S. Murakami, N. Ohno, A continuum theory of creep and creep damage, [in:] Creep in Structures, A.R.S. Ponter, D.R. Hayhurst [Eds.], Springer-Verlag, 422–444, Berlin 1981.
  • 42. A.M. Neville, Properties of concrete, Longman, Harlow 1995.
  • 43. E.T. Onat, F.A. Leckie, Representation of mechanical behavior in the presence of changing internal structure, J. Appl. Mech., 55, 1–10, 1988.
  • 44. G. Piatti, G. Bernasconi, F.A. Cozarelli, Damage equations for creep rupture in steels, Trans. 5th Int. Conf. on Structural Mechanics in Reactor Technology, North- Holland, vol. L, L11/4, 1–9, Amsterdam 1979.
  • 45. R.S. Rivlin, J.L. Ericsen, Stress-deformation relations for isotropic materials, J. Rat. Mech. Anal., 4, 323–425, 1955.
  • 46. F. Rummel, Brittle fracture of rocks, [in:] Rock mechanics, L. Müller [Ed.], Springer- Verlag, 85–94, Wien 1972.
  • 47. A.J.M. Spencer, Theory of invariants, [in:] Continuum Physics, C. Eringen [Ed.], Academic Press, vol. 1, 239–353, New York 1971.
  • 48. L. Szojda, S. Majewski, Numerical simulation of complex stress-state in masonry structure, Proceedings of the Sixth International Masonry Conference, 471–476, London 2002.
  • 49. K.-Ch. Thienel, F.S. Rostasy, G. Becker, Strength and deformation of sealed HTRconcrete under bi-axial stress at elevated temperature, Trans. 11th Int. Conf. on Structural Mechanics in Reactor Technology, Atomic Energy Society of Japan, vol. H, 73–78, Tokyo 1991.
  • 50. A.A. Vakulenko, M.L. Kachanov, Continuum theory of medium with cracks [in Russian], Izv. A.N. S.S.S.R. M.T.T., 4, 159–166, 1971.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT4-0006-0091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.