Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | nr 2 | 97-105
Tytuł artykułu

Modeling spatial aspects of mobile channel for low antenna height environments

Treść / Zawartość
Warianty tytułu
Języki publikacji
It is essential to have deep understanding of the mobile radio channel in particular for radio communication modeling and advanced technology system design. Models for the mobile radio channel are vital for the study of smart antenna systems, both for the design of algorithms, system-testing purposes, and for network planning. This paper provides an intensive study of the spatial characteristics of the mobile channel for low antenna height cellular environments, i.e., picocells and microcells, assuming Gaussian distributed scatterers. We investigate previous work on the angle of arrival (AoA) statistics for Gaussian distributed scatterers and make appropriate comments. Further, we employ the recently proposed eccentro-scattering physical channel model, as a generalized model, to derive the probability density function (pdf) of AoA of the multipaths at base station (BS) assuming Gaussian distributed scatterers around both BS and mobile station (MS). We found that the pdf of AoA at BS is directly affected by the standard deviation of the scatterers' density and the size of the scattering disc. The derived formulas, in closed form, can be used further for performance assessment of smart antennas and beamwidth design purposes.

Opis fizyczny
Bibliogr. 23 poz., rys.
  • School of Electrical Engineering and Telecommunications, University of New South Wales (UNSW), Sydney, 2052, Australia,
  • [1] A. J. Paulraj and C. B. Papadias, “Space-time processing for wireless communications”, IEEE Sig. Proces. Mag., vol. 14, no. 6, pp. 49–83, 1997.
  • [2] U. Martin, J. Fuhl, I. Gaspard, M. Haardt, A. Kuchar, C. Math, A. F. Molisch, and R. Thom¨a, “Model scenarios for directionselective adaptive antennas in cellular mobile communication systems – scanning the literature”, Wirel. Pers. Commun., vol. 11, no. 1, pp. 109–129, 1999.
  • [3] L. M. Correia, Wireless Flexible Personalised Communications: COST 259, European Co-operation in Mobile Radio Research. Chichester: Wiley, 2001.
  • [4] A. F. Molisch, “A generic model for MIMO wireless propagation channels in macro- and microcells”, IEEE Trans. Sig. Proces., vol. 52, no. 1, pp. 61–71, 2001.
  • [5] Z. Latinovic, A. Abdi, and Y. Bar-Ness, “A wideband space-time model for MIMO mobile fading channels”, in Proc. IEEE Wirel. Commun. Netw. Conf., New Orleans, USA, 2003, pp. 338–342.
  • [6] S. M. Seedahmed, Z. M. Hussain, and P. O’Shea, “A space-time model for mobile radio channel with hyperbolically distributed scatterers”, IEEE Anten. Wirel. Propagat. Lett., vol. 1, no. 12, pp. 211–214, 2002.
  • [7] A. Y. Olenko, K. T. Wong, and E. Hui-On Ng, “Analytically derived TOA-DOA statistics of uplink/downlink wireless multipaths arisen from scatterers on an hollow-disc around the mobile”, IEEE Anten. Wirel. Propagat. Lett., vol. 2, no. 22, pp. 345–348, 2003.
  • [8] Y. Oda, K. Tsunekawa, and M. Hata, “Geometrically based directional channel model for urban mobile communication systems”, in Proc. IEEE APWC Conf. Anten. Propagat. Wirel. Commun., Waltham, USA, 2000, pp. 87–90.
  • [9] J. Fuhl, A. F. Molisch, and E. Bonek, “Unified channel model for mobile radio systems with smart antennas”, IEE Proc. Rad. Son. Navigat., vol. 145, no. 1, pp. 32–41, 1998.
  • [10] P. Petrus, J. H. Reed, and T. S. Rappaport, “Geometrically based statistical channel model for macrocellular mobile environments”, in Proc. IEEE GLOBECOM’96, London, UK, 1996, pp. 1197–1201.
  • [11] R. B. Ertel and J. H. Reed, “Angle and time of arrival statistics for circular and elliptical scattering models”, IEEE J. Select. Areas Commun., vol. 17, no. 11, pp. 1829–1840, 1999.
  • [12] J. C. Liberti and T. S. Rappaport, “A geometrically based model for line-of-sight multipath radio channels”, in Proc. IEEE VTC’96, Atlanta, USA, 1996, pp. 844–848.
  • [13] R. Janaswamy, “Angle and time of arrival statistics for the Gaussian scatter density model”, IEEE Trans. Wirel. Commun., vol. 1, no. 3, pp. 488–497, 2002.
  • [14] R. J. Piechocki, G. V. Tsoulos, and J. P. McGeehan, “Simple general formula for pdf of angle of arrival in large cell operational environments”, Electron. Lett., vol. 34, no. 18, pp. 1784–1785, 1998.
  • [15] M. P. Lotter and P. Van Rooyen, “Modeling spatial aspects of cellular CDMA/SDMA systems”, IEEE Commun. Lett., vol. 3, no. 5, pp. 128–131, 1999.
  • [16] N. M. Khan, M. T. Simsim, and P. B. Rapajic, “A generalized spatial model for all cellular environments”, in Proc. IEEE SympoTIC’04, Bratislava, Slovakia, 2004, pp. 33–38.
  • [17] P. Van Rooyen, M. P. Lotter, and D. Van Wyk, Space-Time Processing for CDMA Mobile Communications. Boston: Kluwer, 2001.
  • [18] Y. Chen and V. K. Dubey, “Accuracy of geometric channel-modeling methods”, IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 82–93, 2004.
  • [19] M. K. Simon and M. S. Alouini, Digital Communications over Fading Channels – A Unified Approach to Performance Analysis. New York: Wiley, 2000.
  • [20] A. Papoulis, Probability, Random Variables, and Stochastic Process. New York: McGraw-Hill, 1984.
  • [21] C. Ward, M. Smith, A. Jeffries, D. Adams, and J. Hudson, “Characterising the radio propagation channel for smart antenna systems”, Electron. Commun. Eng. J., vol. 8, no. 4, pp. 191–200, 1996.
  • [22] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel”, IEEE J. Select. Areas Commun., vol. 18, no. 3, pp. 347–360, 2000.
  • [23] J. B. Andersen and K. I. Pedersen, “Angle of arrival statistics for low resolution antennas”, IEEE Trans. Anten. Propagat., vol. 50, no. 3, pp. 391–395, 2002.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.