Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | Vol. 51, nr 4 | 317-348
Tytuł artykułu

Fe-analysis of patterning of shear zones in granular bodies for earth pressure problems of a retaining wall

Treść / Zawartość
Warianty tytułu
Języki publikacji
The evolution of shear zones in granular bodies for earth pressure problems of a retaining wall in conditions of plane strain was analyzed. The passive and active failure of a retaining wall was discussed. The calculations were carried out with a rigid and very rough retaining wall undergoing horizontal translation, rotation around the top and rotation around the bottom. The behaviour of dry sand was numerically modelled with a finite element method using a hypoplastic constitutive relation with polar extensions. Attention was paid to the influence of different wall movements on shear localization. The initial void ratio was assumed to be non-uniformly distributed. The geometry of calculated shear zones was compared with corresponding experimental results of laboratory model tests.

Opis fizyczny
Bibliogr. 103 poz., il.
  • Gdańsk University of Technology, Civil Engineering Department, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland,
  • Adeosun A. (1968), Lateral Forces and Failure Patterns in the Cutting of Sands, Research Project, University of Cambridge.
  • Aifantis E. C. (1984), On the Microstructural Origin of Certain Inelastic Models, J. Eng. Mater. Technol., 106, 326–334.
  • Arthur J. R. F. (1962), Strains and Lateral Force in Sand, PhD Thesis, University of Cambridge.
  • Bauer E. (1996), Calibration of a Comprehensive Hypoplastic Model for Granular Materials, Soils and Foundations, 36, 1, 13–26.
  • Bazant Z., Lin F. B. (1988), Nonlocal Yield Limit Degradation, Int. J. Num. Meth. Eng., 26, 1805–1823.
  • Behringer R. P., Miller B. (1997), Stress Fluctuations for Sheared 3D Granular Materials, Proc. Powder and Grains (Behringer and Jenkins, eds.), Balkema, 333–336.
  • Böhrnsen J. U. (2002), Dynamisches Verhalten von Schüttgütern beim Entleeren aus Silos, PhD Thesis, University of Braunschweig, Germany.
  • Borst R. de (1991), Simulation of Strain Localization: a Reappraisal of the Cosserat Continuum, Engng. Computations, 8, 317–332.
  • Borst R. de, Mühlhaus H. B., Pamin J., Sluys L. Y. (1992), Computational Modelling of Localization of Deformation, Proc. of the 3rd Int. Conf. Comp. Plasticity (D. R. J. Owen, E. Onate, E. Hinton, eds.), Pineridge Press, Swansea, 483–508.
  • Bransby P. L. (1968), Stress and Strain in Sand Caused by Rotation of a Model Wall, PhD Thesis, University of Cambridge.
  • Bransby P. L., Milligan G. W. E. (1975), Soil Deformations Near Cantilever Sheet Pile Walls, Géotechnique, 25, 2, 175–195.
  • Brinkgreve R. (1994), Geomaterial Models and Numerical Analysis of Softening, PhD Thesis, Delft University.
  • Caquot A., Kerisel J. (1948), Tables for the Calculation of Passive Pressures, Active Pressures and Bearing Capacity of Foundations, Gauthier-Villars, Paris.
  • Christian J. T., Hagmann A. J., Marr W. A. (1977), Incremental Plasticity Analysis of Frictional Soils, Int. J. Num. Anal. Meth. Geomech., 1, 343–375.
  • Coulomb C. A. (1775), Essai Sur une Application, Science et Industrie, Paris.
  • Darwin G. H. (1883), On the Horizontal Thrust of a Mass of Sand, Proc. Inst. Civ. Eng., 71, 350–378.
  • Dembicki E. (1979), Active, Passive Earth Pressure and Bearing Capacity, Arkady, Warszawa (in Polish).
  • Desrues J., Hammad W. (1989), Shear Banding Dependency on Mean Pressure Level in Sand, Proc. Int. Workshop on Numerical Methods for Localization and Bifurcation of Granular Bodies, (E. Dembicki et al, eds.), Gdansk, Poland, 57–67.
  • Desrues J., Chambon R., Mokni M., Mazerolle F. (1996), Void Ratio Evolution Inside Shear Bands in Triaxial Sand Specimens Studied by Computed Tomography, G´eotechnique, 46, 3, 529–546.
  • Ehlers W., Graf T. (2003), Adaptive Computation of Localization Phenomena in Geotechnical Applications, In: Bifurcations and Instabilities in Geomechanics (J. Labuz and A. Drescher, eds), Swets and Zeitlinger, 247–262.
  • Ehlers W., Ramm E., Diebels S., D’Addetta G. A. (2003), From Particle Ensembles to Cosserat Continua: Homogenisation of Contact Forces Towards Stresses and Couple Stresses, Int. J. Solids and Structures, 40, 6681–6702.
  • Fourie A. B., Potts D.M. (1989), Comparison of Finite Element and Limiting Equilibrium Analyses for an Embedded Cantilever Retaining Wall, G´eotechnique, 39, 2, 175–188.
  • Geng J., Hartley R. R., Howell D., Behringer R. P., Reydellet G., Clement E. (2003), Fluctuations and Instabilities in Granular Materials, In: Bifurcations and Instabilities in Geomechanics (J. Labuz and A. Drescher, eds.), Swets and Zeitlinger, 79–108.
  • Groen A. E. (1997), Three-Dimensional Elasto-Plastic Analysis of Soils,. PhD Thesis, Delft University.
  • Gudehus G. (1978), Engineering Approximations for Some Stability Problems in Geomechanics, Advances in Analysis of Geotechnical Instabilities, University of Waterloo Press, 13, 1–24.
  • Gudehus G. (1986), Einige Beitr¨age der Bodenmechanik zur Entstehung und Auswirkung von Diskontinuitäten, Felsbau, 4, 190–195.
  • Gudehus G., Schwing E. (1986), Standsicherheit Historischer Stützwände, Internal Report of the Institute of Soil and Rock Mechanics, University Karlsruhe.
  • Gudehus G. (1996a), A Comprehensive Constitutive Equation for Granular Materials, Soils and Foundations, 36, 1, 1–12.
  • Gudehus G. (1996b), Erddruckermittlung, Grundbautaschenbuch, Teil 1, Ernst und Sohn.
  • Gudehus G., N¨ubel K. (2004), Evolution of Shear Bands in Sand., G´eotechnique, 54(3), 187–201.
  • Herle I. (1998), A Relation between Parameters of a Hypoplastic Constitutive Model and Grain Properties, In: Localisation and Bifurcation Theory for Soils and Rocks in Gifu, ed.: T. Adachi, F. Oka, A. Yashima, Balkema, 91–99.
  • Herle I., Gudehus G. (1999), Determination of Parameters of a Hypoplastic Constitutive Model from Properties of Grain Assemblies, Mechanics of Cohesive-Frictional Materials, 4, 5, 461–486.
  • Hicks M. A., Yap T. Y., Bakar A. A. (2001), Adaptive and Fixed Mesh Study of Localisation in a Strain-Softening Soil, In: Bifurcation and Localisation Theory in Geomechanics (H. B. Mühlhaus, A. Dyskin and E. Pasternak, eds.), Balkema, 147–155.
  • Houlsby G. T., Wroth C. P. (1982), Direct Solution of Plasticity Problems in Soils by the Method of Characteristics, Proc. 4th Int. Conf. on Num. Meth. in Geomech., Edmonton, Canada, 1059–1071.
  • Huang W., N¨ubel K., Bauer E. (2002), A Polar Extension of Hypoplastic Model for Granular Material with Shear Localization, Mechanics of Materials, 34, 563–576.
  • James R. G. (1965), Stress and Strain Fields in Sand, PhD Thesis, University of Cambridge.
  • James R. G., Bransby P. L. (1971), A Velocity Field for Some Passive Earth Pressure Problems, Géotechnique, 21, 1, 61–83.
  • Leśniewska D. (2000), Analysis of Shear Band Pattern Formation in Soil, Habilitation, Institute of Hydro-Engineering of the Polish Academy of Sciences, Gdansk, Poland.
  • Leśniewska D., Mr´oz Z. (2000), Limit Equilibrium Approach to Study the Evolution of Shear Band Systems in Soil, Géotehnique, 50, 389–403.
  • Leśniewska D., Mr´oz Z. (2001), Study of Evolution of Shear Band Systems in Sand Retained by Flexible Wall, Int. J. Numer. Anal. Meth. Geomech., 25, 909–932.
  • Leśniewska D., Mróz Z. (2003), Shear Bands in Soil Deformation Processes, In: Bifurcations and Instabilities in Geomechanics (J. Labuz and A. Drescher, eds.), Swets and Zeitlinger, 109–119.
  • Lord J. A. (1969), Stress and Strains in an Earth Pressure Problem, PhD Thesis, University of Cambridge.
  • Lucia J. B. A. (1966), Passive Earth Pressure and Failure in Sand, Research Report, University of Cambridge.
  • Maier T. (2002), Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizit¨at, PhD Thesis, Dortmund University, Germany.
  • Marcher T., Vermeer P. A. (2001), Macromodelling of Softening in Non-Cohesive Soils, In: Continuous and Discontinuous Modelling of Cohesive-Frictional Materials (P. A. Vermeer et al, eds.), Springer-Verlag, 89–110.
  • May J. (1967), A Pilot Project on the Cutting of Soils, Research Report, University of Cambridge.
  • Milligan G. W. E. (1974), The Behaviour of Rigid and Flexible Retaining Walls in Sand, Géotechnique, 26, 3, 473–494.
  • Milligan G. W. E. (1983), Soil Deformations Near Anchored Sheet-Pile Walls, Géotechnique, 33, 1, 41–55.
  • Mühlhaus H. B. (1989), Application of Cosserat Theory in Numerical Solutions of Limit Load Problems, Ing. Arch., 59, 124–137.
  • Mühlhaus, H. B. (1990), Continuum Models for Layered and Blocky Rock, In: Comprehensive Rock Engineering (Hudson, J. A., Fairhurst, Ch., eds.), Pergamon Press, 2, 209–231.
  • Nakai T. (1985), Analysis of Earth Pressure Problems Considering the Influence of Wall Friction and Wall Deflection, Proc. Int. Conf. Num. Meth. Geomech., Nagoya, 765–772.
  • Negre R. (1959), Sur Une Methode Approchee de la Repatition des Equilibre Limite des Massifs Plans a Faible Frottement Interne, C. R. A. S., Paris, 3118–3120.
  • Niemunis A., Herle I. (1997), Hypoplastic Model for Cohesionless Soils with Elastic Strain Range, Mechanics of Cohesive-Frictional Materials, 2, 279–299.
  • Nübel K., Karcher Ch. (1998), FE Simulations of Granular Material with a Given Frequency Distribution of Voids as Initial Condition, Granular Matter, 1, 3, 105–112.
  • Nübel K. (2002), Experimental and Numerical Investigation of Shear Localisation in GranularMaterials, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, 62.
  • Nübel K., Huang W. X. (2004), A Study of Localized Deformation Pattern in Granular Media, Comp. Method Appl. M., 193, 2719–2743.
  • Oda M., Konishi J., Nemat-Nasser S. (1982), Experimental Micromechanical Evaluation of Strength of Granular Materials, Effects of Particle Rolling, Mechanics of Materials, North-Holland Publishing Comp., 1, 269–283.
  • Oda M. (1993), Micro-fabric and Couple Stress in Shear Bands of Granular Materials, In: Powders and Grains (C. Thornton ed.), Rotterdam, Balkema, 161–167.
  • Oda M., Kazama H. (1998), Micro-Structure of Shear Band and its Relation to the Mechanism of Dilatancy and Failure of Granular Soils, G´eotechnique, 48, 465–481.
  • Pamin J. (1994), Gradient-Dependent Plasticity in Numerical Simulation of Localisation Phenomena, PhD Thesis, Delft University.
  • Pasternak E., Mühlhaus H.-B. (2001), Cosserat Continuum Modelling of Granulate Materials, In: Computational Mechanics – New Frontiers for New Millennium (Valliappan S. and N. Khalili, eds.), Elsevier Science, 1189–1194.
  • Potts D. M., Fourie A. B. (1984), The Behaviour of a Propped Retaining Wall: Results of a Numerical Experiment, G´eotechnique, 34, 3, 383–404.
  • Roscoe K. H. (1970), The Influence of Strains in Soil Mechanics, G´eotechnique, 20, 2, 129–170.
  • Schäfer H. (1962), Versuch einer Elastizit¨atstheorie des Zweidimensionalen Ebenen Cosserat-Kontinuums, Miszellaneen der AngewandtenMechanik, Festschrift Tolmien,W., Berlin, Akademie--Verlag.
  • Simpson B. (1972), The Use of Finite Element Technique in Soil Mechanics with Particular Reference to Deformation in Plane Strain, PhD Thesis, University of Cambridge.
  • Simpson B., Wroth C. P. (1974), Finite Element Computations for a Model Retaining Wall in Sand, Proc. Int. Conf. on Num. Meth. in Geomech, (Z. Eisenstein, ed.), Edmonton, 1982, 85–93.
  • Sluys L. J. (1992),Wave Propagation, Localisation and Dispersion in Softening Solids, PhD Thesis, Delft University of Technology.
  • Smith I. (1972), Stress and Strain in a SandMass Adjacent to a ModelWall, PhD Thesis, University of Cambridge.
  • Sokolovski V. V. (1965), Statics of Granular Media,. Pergamon Press.
  • Steinmann P. (1995), Theory and Numerics of Ductile Micropolar Elastoplastic Damage, Int. J. for Num. Meth. in Engng., 38, 583–606.
  • Szczepiński W. (1974), Limit States and Kinematics of Granular Materials (in Polish), PWN Warszawa.
  • Tatsuoka F., Okahara M., Tanaka T., Tani K., Morimoto T., Siddiquee M. S. (1991), Progressive Failure and Particle Size Effect in Bearing Capacity of Footing on Sand, Proc. of the ASCE Geotechnical Engineering Congress, 27, 2, 788–802.
  • Tatsuoka F., Siddiquee M. S., Yoshida T., Park C. S., Kamegai Y., Goto S., Kohata Y. (1994), Testing Methods and Results of Element Tests and Testing Conditions of Plane Strain Model Bearing Capacity Tests using Air-Dried Dense Silver Buzzard Sand, Internal Report of the University of Tokyo, 1–129.
  • Tatsuoka F., Goto S., Tanaka T., Tani K., Kimura Y. (1997), Particle Size Effects on Bearing Capacity of Footing on Granular Material, In: Deformation and Progressive Failure in Geomechanics, (A. Asaoka, T. Adachi, and F. Oka, eds.), Pergamon, 133–139.
  • Tejchman J. (1989), Scherzonenbildung und Verspannungseffekte in Granulaten unter Ber¨ucksichtigung von Korndrehungen, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, 117, 1–236.
  • Tejchman J., Wu W. (1993), Numerical Study on Shear Band Patterning in a Cosserat Continuum, Acta Mechanica, 99, 61–74.
  • Tejchman J. (1997), Modelling of Shear Localisation and Autogeneous Dynamic Effects in Granular Bodies, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, 140, 1–353.
  • Tejchman J. (1998), Numerical Simulation of Filling in Silos with a Polar Hypoplastic Constitutive Law, Powder Technology, 96, 227–239.
  • Tejchman J., Herle I., Wehr J. (1999), FE-Studies on the Influence of Initial Void Ratio, Pressure Level and Mean Grain Diameter on Shear Localisation, Int. J. Num. Anal. Meth. Geomech., 23, 2045–2074.
  • Tejchman J., Herle I. (1999), A Class “A” Prediction of the Bearing Capacity of Plane Strain Footings on Granular Material, Soils and Foundations, 39, 5, 47–60.
  • Tejchman J. (2000), Behaviour of Granular Bodies in Induced Shear Zones, Granular Matter, 2, 2, 77–96.
  • Tejchman J., Gudehus G. (2001), Shearing of a Narrow Granular Strip with Polar Quantities, Int. J. Num. and Anal. Methods in Geomechanics, 25, 1–28.
  • Tejchman J., Dembicki E. (2001), Numerical Analysis of Active and Passive Pressure of Cohesionless Soil, Inzynieria Morska i Geotechnika, 6, 365–368 (in Polish).
  • Tejchman J. (2002a), Patterns of Shear Zones in Granular Materials within a Polar Hypoplastic Continuum, Acta Mechanica, 155, 1–2, 71–95.
  • Tejchman J. (2002b), Evolution of Shear Localisation at Earth Pressure Problems of a Retaining Wall, Task Quarterly, Gdansk University of Technology, 6, 3, 387–410.
  • Tejchman J. (2002c), Effects of Wall Inclinations and Sall Imperfections on Pressures during Silo Flow in Silos, Kona, 20, 1–8.
  • Tejchman J. (2003), A Non-Local Hypoplastic Constitutive Law to Describe Shear Localisation in Granular Bodies, Archives of Hydro-Engineering and Environmental Mechanics, 50, 4, 229–250.
  • Tejchman J., Bauer E. (2004), Effect of Cyclic Shearing on Shear Localization in Granular Bodies, Granular Matter, 5, 201–212.
  • Tejchman J. (2004a), Comparative FE-Studies of Shear Localizations in Granular Bodies within a Polar and Non-Local Hypoplasticity, Mechanics Research Communications, 3, 1, 341–354.
  • Tejchman J. (2004b), Effect of Heterogeneity on Shear Zone Formation During Plane Strain Compression, Archives of Hydro-Engineering and Environmental Mechanics, Vol. LI, 2, 149–183.
  • Tejchman J. (2004c), Simulations of Shear Localization with Gradient-Enhanced Hypoplasticity, Archives of Hydro-Engineering and Environmental Mechanics, Vol. LI, 3, 243–265.
  • Terzaghi K. (1951), Mecanique Theorique des Sols, Dunod., Paris.
  • Uesugi M., Kishida H., Tsubakihara Y. (1988), Behaviour of Sand Particles in Sand-Steel Friction, Soils and Foundations, 28, 1, 107–118.
  • Vardoulakis I. (1980), Shear Band Inclination and Shear Modulus in Biaxial Tests, Int. J. Num. Anal. Meth. Geomech., 4, 103–119.
  • Vermeer P. A., van Langen H. (1989), Soil Collapse Computations with Finite Elements, Ing. Arch., 59, 221–236.
  • Wang C. C. (1970), A New Representation Theorem for Isotropic Functions, J. Rat. Mech. Anal., 36, 166–223.
  • Wang Y. Z. (2000), Distribution of Earth Pressure on a Retaining Wall, G´eotechnique, 50, 1, 83–88.
  • Wehr J., Tejchman J. (1999), Sand Anchors in Rock and Granular Soils – Experiments and a Polar Hypoplastic Approach, In: Proc. World Civil and Environmental Engineering Conference, Thailand (eds. A.S. Balasubramaniam et al), 2, VII 1–10.
  • Wolffersdorff P. A. von (1996), A Hypoplastic Relation for Granular Materials with a Predefined Limit State Surface, Mechanics Cohesive-Frictional Materials, 1, 251–271.
  • Wu W., Niemunis A. (1996), Failure Criterion, Flow Rule and Dissipation Function Derived from Hypoplasticity, Mechanics of Cohesive-Frictional Materials, 1, 145–163.
  • Zaimi S. A. (1998),Modelisation de l’Coulement des Charges dans le Haut Fourneau, PhD Thesis, Ecole Centrale Paris, France.
  • Zervos A., Papanastasiou P., Vardoulakis I. (2001), A Finite Element Displacement Formulation for Gradient Elastoplasticity, In: Bifurcation and Localisation Theory in Geomechanics (H. B. M¨uhlhaus, A. Dyskin and E. Pasternak, eds.), Balkema, 177–187.
  • Ziegler M. (1986), Berechnung des Verschiebungsabh¨angigen Erddruckes in Sand, PhD Thesis, Institute for Soil and Rock Mechanics, Karlsruhe University.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.