The top cycle and uncovered solutions for weak tournaments

by

Somdeb Lahiri

Indian Institute of Management
Ahmedabad-380 015, India

and

School of Economic and Business Sciences
University of Witwatersrand at Johannesburg
Private Bag 3, WITS 2050, South Africa
E-mail: 060lah@mentor.edcm.wits.ac.za

Summary: In this paper we study axiomatic properties of the top cycle and uncovered solutions for weak tournaments. Subsequently, we establish its connection with the rational choice theory.

Keywords: top cycle, uncovered solution, weak tournaments.

1. Introduction

An abiding problem in choice theory has been the one of characterizing those choice functions which are obtained as a result of some kind of optimisation. Specifically, the endeavour has concentrated largely on finding a binary relation (if there be any) whose best elements coincide with observed choices. An adequate survey of this line of research till the mid eighties is available in Moulin (1985). More recently, the emphasis has focused on binary relations defined on non-empty subsets of a given set, such that the choice function coincides with the best subset corresponding to a feasible set of alternatives. This problem has been provided with a solution in Lahiri (1999), although the idea of binary relations defined on subsets is a concept which owes its analytical origins to Pattanaik and Xu (1990).

Given a binary relation, the idea of a function which associates with each set a non-empty subset of the given set has a long history whose exact origin is very difficult to specify and in any case is unknown to the author. Laslier (1997) provides a very exhaustive survey of the related theory when the given binary relation is reflexive, complete and anti-symmetric.

In this paper we extend the above set of binary relations to include those which are not necessarily anti-symmetric. Such binary relations which are reflexive, complete and anti-symmetric but not necessarily anti-symmetric are called weak tournaments.
as weak tournaments. Given a weak tournament, a solution is a function which
associates to each non-empty subset a non-empty collection of elements from
the subset, on the basis of the given weak tournament. Lucas (1992) has a
discussion of abstract games and related solution concepts. The concept of an
abstract game is originally due to von Neumann and Morgenstern and they are
very similar to the weak tournaments that we study in this paper. Much of
what is discussed in Laslier (1997) and references therein carry through into
this framework. An important consequence of both these frameworks is that
often a set may fail to have an element which is best with respect to the given
binary relation. To circumvent this problem the concept of the top cycle set is
introduced, which selects from among the feasible alternatives only those which
are best with respect to the transitive closure of the given relation. The top
cycle set is always non-empty and in this paper we provide an axiomatic char-
acterization of the top-cycle solution. It is subsequently observed that the top
cycle solution is the coarsest solution which satisfies two innocuous assumptions.

An alternative \(x \) is said to cover another alternative \(y \) if and only if \(x \) is
preferred to \(y \) and for every other third element \(z \) if (a) \(y \) is at least as good
as \(z \), then so is \(x \); (b) if \(y \) is preferred to \(z \) then so is \(x \). Given any feasible
set, its uncovered set is the set of all elements in the feasible set which are not
covered by any other element in the same set. The question that naturally arises
is the following: Given a choice function, under what condition does a binary
relation exist, whose uncovered sets always coincide with the values of the choice
function? This problem is answered in this paper, where instead of defining the
covering relation globally, we consider the covering relation for each individual
feasible set, by simply looking at the restriction of the comparison function to
that set. In such a situation that fact that \(x \) covers \(y \) in a particular feasible set
does not imply that \(x \) covers \(y \) globally. In effect, we are then concerned with
what Sen (1997) calls 'menu based' relations. In this paper we also address the
problem of axiomatically characterizing the uncovered solution (where 'covering'
is now defined as a 'menu-based' concept).

In Peris and Subiza (1999) it is shown that a considerable portion of the
theory developed in the context of tournaments, carry through to weak tourna-
ments as well. Our axiomatic characterizations are, however, different from the
ones available in Peris and Subiza (1999).

In a final section of this paper we revert to the context of classical rational
choice theory. By exploiting the close similarity between a solution and a choice
function, we discuss the necessary implications of the results established in the
earlier sections of the paper, which apply to choice functions. This leads to a
modest extension of the theory that has been summarized in Moulin (1985).

2. Solutions

Let \(X \) be a finite, non-empty set and given any non-empty subset \(A \) of \(X \), let
denotes the set of all non-empty subsets of X. If $A \in [X]$, then $\#(A)$ denotes
the number of elements in A. If $A, B \in [X]$, then $A \subset B$, is used to denote
“A is a proper subset of B”.

A binary relation R on X is said to be (a) reflexive if $\forall x \in X : (x, x) \in R$;
(b) complete if $\forall x, y \in X$ with $x \neq y$, either $(x, y) \in R$ or $(y, x) \in R$; (c)
transitive if $\forall x, y, z \in X, [(x, y) \in R \& (y, z) \in R$ implies $(x, z) \in R]$; (d) anti-
symmetric if $\forall x, y \in X, (x, y) \in R \& (y, x) \in R$ implies $x = y$. Given a binary
relation R on X and $A \in [X]$, let $R|A = R \cap (A \times A)$. Let Π denote the set of
all reflexive and complete binary relations. If $R \in \Pi$, then R is called a weak
tournament. Given a binary relation R on X and $A \in [X]$, let $G(A, R)$ denote
the set of A.

The following example shows that given $R \in \Pi$ and $A \in [X]$, $G(A, R)$ may
be empty:

EXAMPLE 1 Let $X = \{x, y, z\}$ and let $R = \Delta(X) \cup \{(x, y), (y, z), (z, x)\}$. Clearly,
$G(X, R)$ is empty.

Given $R \in \Pi$, $A \in [X]$, let $T(R|A)$ be a binary relation on A defined as follows: $(x, y) \in T(R|A)$ if and only if there exists a positive integer K and
x_1, \ldots, x_K in A with (i) $x_1 = x, x_K = y$: (ii) $(x_i, x_{i+1}) \in R \forall i \in \{1, \ldots, K-1\}$.
$T(R|A)$ is called the transitive hull of R in A. Clearly $T(R|A)$ is always transi-
tive.

Given $R \in \Pi$, $A \in [X]$, $G(A, T(R|A))$ is called the top cycle set of R in A.
Clearly, $G(A, T(R|A))$ is non-empty whenever $R \in \Pi$ and $A \in [X]$.

Let, R belong to Π. An R-based solution on X is a function $S : [X] \rightarrow [X]$ such that:

(i) $\forall A \in [X] : S(A) \subset A$;
(ii) $\forall x, y \in X : x \in S(\{x, y\})$ if and only if $(x, y) \in R$.

Thus, in particular, $R = R^S \equiv \cup\{S(\{x, y\}) \times \{x, y\} : x, y \in X\}$

If $\forall A \in [X]$, $G(A, R)$ is non-empty valued then the associated solution is
called the R-based best solution on X. In further course of the paper, whenever
there is no scope for confusion, an R-based solution will be simply referred to as
a solution.

The Top Cycle solution denoted $TC : [X] \rightarrow [X]$ is defined as follows: $\forall A \in
[X] : TC(A) = G(A, T(R|A))$.

Given $R \in \Pi$, $A \in [X]$ and $x, y \in X$, we say that x covers y via R in A if:

(i) $x, y \in A$;
(ii) $(x, y) \in P(R)$;
(iii) $\forall z \in A : [(y, z) \in R \implies (x, z) \in R]$;
Given \(R \in \Pi \), let \(\hat{R}(A) = \{(x,y) \in A \times A/ x \text{ covers } y \text{ via } R \text{ in } A\} \). Let \(UC(A) = \{x \in A/ \text{ if } y \in A \text{ then } (y,x) \not\in \hat{R}(A)\} \). It is easy to see that \(\forall A \in [X], \hat{R}(A) \) is a transitive binary relation on \(A \). Thus \(UC(A) \neq \emptyset \) whenever \(A \in [X] \). Hence, (i) \(\forall A \in [X]: UC(A) \subseteq A \); (ii) \(\forall x,y \in X: x \in UC(\{x,y\}) \) if and only if \((x,y) \in R \).

The solution \(UC: [X] \rightarrow [X] \) is called the uncovered solution.

Observation 1 \(\forall A,B \in [X] \) and \(x,y \in A: [(x,y) \in \hat{R}(A) \text{ and } B \subseteq A] \) implies \([(x,y) \in \hat{R}(B)]\).

The proof of this observation follows immediately from the relevant definitions. Given \(A \in [X] \) and \(x \in X \) let \(s(x,A) = \#\{y \in A/(x,y) \in P(R)\} - \#\{y \in A/(y,x) \in P(R)\} \). The Copeland solution \(Co: [X] \rightarrow [X] \) is defined as follows:

\(\forall A \in [X]: Co(A) = \{x \in A/ \forall y \in A: s(x,A) \geq s(y,A)\} \).

Observation 2 \(\forall A \in [X]: Co(A) \subseteq UC(A) \).

Proof of Observation 2. Let \(A \in [X] \) and \(x \in Co(A) \). Towards a contradiction suppose \(x \not\in UC(A) \). Then, there exists \(y \in A \), such that \((y,x) \in \hat{R}(A) \). But then, \(\{z \in A/(x,z) \in P(R)\} \subseteq \{z \in A/(y,z) \in P(R)\} \) and \(\{z \in A/(z,y) \in P(R)\} \subseteq \{z \in A/(z,x) \in P(R)\} \). Thus, \(s(y,A) > s(x,A) \), contradicting \(x \in Co(A) \). This proves the observation.

The following proposition is an extension of a result valid for tournaments which is available in Laslier (1997):

Proposition 1 \(\forall A \in [X]: Co(A) \subseteq UC(A) \subseteq TC(A) \).

The proof is provided in the Appendix.

Example 2 Let \(X = \{x,y,z\} \) and let \(R = \Delta(X) \cup \{(x,y), (y,z), (z,y), (x,z), (z,x)\} \). Now, \(Co(X) = \{x\} \subseteq \{x,z\} = UC(X) \subseteq X = TC(X) \).

3. Axioms for the Top Cycle Solution

A solution \(S \) on \(X \) is said to satisfy:

Strong Condorcet \((SC)\): if \(\forall A \in [X]: [x \in A] \) and \([\forall y \in A \setminus \{x\}: (x,y) \in P(R)] \)

implies \([S(A) = \{x\}] \);

Expansion Independence \((EI)\): if \(\forall A \in [X]: [x \in S(A), y \in A, (y,z) \in R] \)

implies \([x \in S(A \cup \{z\})] \);

Existence of an Inessential Alternative \((EIA)\): if \(\forall A \in [X] \) with \(\#(A) \geq 2 \) and \(\forall x \in S(A) \), there exists \(y \in A \) (possibly depending on \(A \) and \(x \)) such that \(x \in S(A \setminus \{y\}) \).
Proof. It is clear that TC satisfies SC, EI and EIA. Hence let S be any solution that satisfies SC, EI and EIA. Let $A \in [X]$. If $\#(A)$ is one or two there is nothing to prove, since $S(A) = TC(A)$ by definition. Thus, suppose $S(A) = TC(A)$ whenever $\#(A) = 1, \ldots k$. Let $\#(A) = k + 1$. Let $x \in A$. If $\forall y \in A \setminus \{x\}, (x, y) \in P(R)$ then $S(A) = \{x\} = TC(A)$. Hence, suppose $\forall x \in A$ there exists $y \in A \setminus \{x\}$ such that $(y, x) \in R$.

Let $x \in TC(A)$. Since TC satisfies EIA, there exists $z \in A$ such that $x \in TC(A \setminus \{z\})$. By the induction hypothesis $S(A \setminus \{z\}) = TC(A \setminus \{z\})$. If $(x, z) \in R$ then by EI, $x \in S(A)$. If $(x, z) \not\in R$, then since $x \in TC(A) = G(A, T(R|A))$, there exists $w \in A$ such that $(x, w) \in T(R|A)$ and $(w, z) \in R$. Then by EI once again $x \in S(A)$. Hence, $TC(A) \subseteq S(A)$.

Now, suppose $x \in S(A)$ and towards a contradiction suppose $x \not\in TC(A)$. By EIA there exists $z \in A$ such that $x \in S(A \setminus \{z\})$. By the induction hypothesis $S(A \setminus \{z\}) = TC(A \setminus \{z\})$. If $(x, z) \not\in R$ then $x \in TC(A)$. Hence, suppose $(x, z) \in R$. Thus, $(z, x) \in P(R)$. Let $y \in TC(A)$. Clearly, $y \not= x$. Suppose $y \not= z$. Thus $y \in A \setminus \{z\}$. Thus $(z, y) \in T(R|A)$ which combined with $y \in TC(A)$ gives us $x \in TC(A)$. Hence, $y = z$. If for some $w \in A \setminus \{x, z\}$ we had $(w, z) \in R$, then since $x \in TC(A \setminus \{z\})$ and $w \in A \setminus \{z\}$ we would get $x \in TC(A)$. Thus, $\forall w \in A : (z, w) \in P(R)$. But then, by SC, $S(A) = \{z\}$, contradicting $x \in S(A)$. Thus $x \in TC(A)$. Hence, $S(A) \subseteq TC(A)$. Thus, $S(A) = TC(A)$.

By a standard induction argument it now follows that $\forall A \in [X] : S(A) = TC(A)$.

A solution S on X is said to satisfy:

Converse Condorcet (CC): if $\forall A \in [X]$ and $x \in A : \forall y \in A \setminus \{x\} : (y, x) \in P(R)$ implies $[x \not\in S(A)]$;

Weak Existence of an Inessential Alternative $(WEIA)$: if $\forall A \in [X]$ with $\#(A) \geq 4$ and $\forall x \in S(A)$, there exists $y \in A$ (possibly depending on A and x) such that $x \in S(A \setminus \{y\})$.

Since TC satisfies EIA it also satisfies $WEIA$. In fact, we can now prove the following:

Theorem 2 Let S be any solution on X which satisfies SC, CC and $WEIA$. Then, $\forall A \in [X] : S(A) \subseteq TC(A)$.

Proof. Step 1: Let S be any solution on X which satisfies SC and CC. Then, $\forall A \in [X]$ with $\#(A) \geq 3$: $S(A) \subseteq TC(A)$.

Proof of Step 1. For $\#(A) \geq 2$ there is nothing to prove since by the definition of a solution all of them agree on such sets. Hence, suppose $\#(A) = 3$. Let $A = \{x, y, z\}$ with $x \not= y \not= z \not= x$. Suppose, without loss of generality that $x \in S(A)$. If $(x, y), (x, z) \in R$, then $x \in TC(A)$. Thus, suppose without loss of generality that $(y, x) \in P(R)$. If $(z, x) \in P(R)$ then by CC, $x \not\in S(A)$, contradicting what we have assumed. Hence (x, z) must belong to R. If $(z, x) \not\in R$ then again we are done.

The top cycle and uncovered solutions for weak tournaments
Let \(y, z \in P(R) \), then by \(SC \), \(S(A) = \{y\} \), contradicting \(x \in S(A) \). Thus \(S(A) \subset TC(A) \).

Step 2: Let \(S \) be any solution on \(X \) such that \(\forall A \in [X] \) with \(\#(A) \geq 3 \): \(S(A) \subset TC(A) \). Suppose \(S \) satisfies \(SC \), \(WEIA \). Then, \(\forall A \in [X] \): \(S(A) \subset TC(A) \).

Proof of Step 2. Suppose that \(\forall A \in [X] \) with \(3 < \#(A) \leq m \): \(S(A) \subset TC(A) \). Let \(\#(A) = m + 1 \). Thus \(\#(A) \geq 4 \). Let \(x \in S(A) \). By \(WEIA \), there exists \(y \in A \) such that \(x \in S(A \setminus \{y\}) \). By the induction hypothesis \(S(A \setminus \{y\}) \subset TC(A \setminus \{y\}) \). Thus, \(x \in TC(A \setminus \{y\}) \). If \((x, y) \in R \), then clearly \(x \in TC(A) \). Suppose \((y, x) \in P(R) \). If \(\forall z \in A \setminus \{y\}: (y, z) \in P(R) \), then by \(SC \), \(S(A) = \{y\} \), contradicting \(x \in S(A) \). Hence, there exists \(z \in A \setminus \{x, y\} \) such that \((z, y) \in R \). Since \(x \in TC(A \setminus \{y\}) \) and \(z \in A \setminus \{y\} \), \((z, y) \in R \) implies \(x \in TC(A) \). Thus \(S(A) \subset TC(A) \). Step 2 combined with Step 1 and a standard induction argument proves the theorem.

In fact, the above proof reveals the following:

Theorem 3 Let \(S \) be any solution on \(X \) which satisfies \(SC \) and \(EIA \). Then, \(\forall A \in [X] \): \(S(A) \subset TC(A) \).

\(CC \) is not required once we replace \(WEIA \) by \(EIA \), since then the induction argument can begin from \(\#(A) \geq 2 \).

4. The uncovered solution

A solution \(S \) on \(X \) is said to satisfy:

Expansion (E): if \(\forall A, B \in [X] \): \(S(A) \cap S(B) \subset S(A \cup B) \).

It is easy to see that both \(TC \) and \(UC \) satisfy \(E \):

(i) Let \(A, B \in [X] \) and suppose \(x \in UC(A) \cap UC(B) \). Towards a contradiction suppose that \(x \not\in UC(A \cup B) \). Hence there exists \(y \in A \cup B \), such that \(y \) covers \(x \) via \(R \) in \(A \cup B \). Without loss of generality suppose \(y \in A \). By Observation 1, \(y \) covers \(x \) via \(R \) in \(A \). This contradicts \(x \in UC(A) \). Thus, \(UC \) satisfies \(E \).

(ii) Let \(A, B \in [X] \) and suppose \(x \in TC(A) \cap TC(B) \). Towards a contradiction suppose that \(x \not\in TC(A \cup B) \). Hence there exists \(y \in A \cup B \), such that \((x, y) \not\in T(R | A \cup B) \). Without loss of generality suppose \(y \in A \). Thus \((x, y) \not\in T(R | A \cup B) \) implies that \((x, y) \not\in T(R | A) \). This contradicts \(x \in TC(A) \). Thus, \(TC \) satisfies \(E \).

Moulin (1986) has established the following:

Proposition 2 Let \(S \) be any solution satisfying \(SC \) and \(E \). If \(\forall A \in [X] \) with \(\#(A) = 3 \) we have \(UC(A) \subset S(A) \) then \(\forall A \in [X] \): \(UC(A) \subset S(A) \).
Contraction (Con): if $\forall A \in [X]$ with $\#(A) \geq 4$, $[x \in S(A)]$ implies there exists a positive integer $K \geq 2$ and sets $A_1, \ldots, A_K \in [A] \setminus \{A\}$ such that (i) $\cup \{A_k/k = 1, \ldots K\} = A$; (ii) $x \in \cap \{S(A_k)/k = 1, \ldots K\}$.

Dutta and Laslier (1999) establish that UC satisfies Con. However, TC does not as the following example reveals:

Example 3 Let $X = \{x, y, z, w\}$ where x, y, z, w are all distinct. Let $R = A(x, y), (z, x), (w, x), (y, z), (w, y), (z, w)\}$. Clearly, $x \in TC(X)$. Let $A \in [X] \setminus \{x\}$, with $\#(A) \geq 2$. Suppose that $y \notin A$. Then, $x \notin TC(A)$. Hence, $x \in S(A)$. Suppose $x, y \in A \cap B$ where $A, B \in [X] \setminus \{x\}$, $A \neq B$, $A \not\subset B \not\subset A$. Without loss of generality suppose that $A = \{x, y, z\}$ and $B = \{x, y, w\}$. Then, $x \notin TC(B)$. Thus, TC does not satisfy Con.

A solution S on X is said to satisfy:

Tie Splitting (TS): if $\forall A, B \in [X]$ with $A \cap B = \emptyset : [A \times B \subset I(R)$ implies $S(A \cup B) = S(A) \cup S(B)$];

Strong Type 1 Property (ST1P): if $\forall x, y, z \in X$; $[(y, x) \in P(R), (x, z) \in P(R), (z, y) \in R]$ implies $S(\{x, y, z\}) = \{x, y, z\}$.

Note: Let S be any solution satisfying E. If S satisfies ST1P then $[\forall A \in [X]$ with $\#(A) = 3$ we have $UC(A) \subset S(A)$].

Proposition 3 Let S be a solution on X such that $S(A) = UC(A) \forall A \in [X]$. Then, S satisfies SC, CC, TS, ST1P, E and Con.

Proof. We have already seen that UC satisfies E, and SC, CC, TS, ST1P being easy to verify let us show that S satisfies Con. Let $A \in [X]$ with $\#(A) \geq 4$ and $x \in S(A)$. Thus, $y \in A$, $y \neq x$ implies either $[(x, y) \in R]$ or [there exists $z_y \in A$ with either $(x, z_y) \in R$ and $(y, z_y) \notin R$ or $(x, z_y) \in P(R)$ and $(y, z_y) \notin P(R)$].

Let $A_0 = \{y \in A/ (x, y) \in R\}$. Clearly, $A_0 \neq \phi$, since $x \in A_0$. Further, since there does not exist $y \in A_0$, such that y covers x via R in A_0, $x \in S(A_0)$.

Case 1. $A_0 = A$. Since $\#(A) \geq 4$, there exists $\overline{y} \in A \setminus \{x\}$ such that $A \setminus \{x, \overline{y}\} \neq \phi$. Let $A_1 = \{x, \overline{y}\}$ and $A_2 = A \setminus \{\overline{y}\}$. Clearly, $A_1 \subset \subset A$, $A_2 \subset \subset A$ and $A_1 \cup A_2 = A$. Further, $x \in S(A_1) \cap S(A_2)$.

Case 2. $A_0 \subset \subset A$. In this case, let $A_1 = A_0$ and for $y \in A \setminus A_1$, let $A_y = \{x, y, z_y\}$. Since $\#(A) \geq 4$, $A_y \subset \subset A$ whenever $y \in A \setminus A_1$. Further, $\forall y \in A \setminus A_1 : x \in S(A_y)$. Also, $A_1 \cup (\bigcup_{y \in A \setminus A_1} A_y) = A$. Hence, S satisfies Con.

Lemma 1 If $\#(X) \leq 3$ and S is a solution on X which satisfies SC, TS and ST1P, then S is the uncovered solution.

Proof. Let S and X be as in the statement of the lemma. If $\#(X) = 1$ or 2, there is nothing to prove since $S(A) = UC(A) \forall A \in [X]$ by the definition
\[S(A) = UC(A). \] Thus suppose \(A = \{x, y, z\} \) with \(x \neq y \neq z \neq x \). If there exists \(a \in X : (a, b) \in P(R) \forall b \in X \), then \(S(X) = \{a\} = UC(X) \), by SC of both \(S \) and \(UC \). Hence, suppose that \(\forall a \in X \), there exists \(b \in X \setminus \{a\} : (b, a) \in R \).

Case 1. \(I(R) = X \). Then by TS of \(C \) and \(UC \), \(S(X) = UC(X) = X \).

Thus, without loss of generality suppose that \((x, y) \in P(R) \). Hence, by what has been mentioned before, in Case 1, \((z, x) \in R \).

Case 2. \((z, x), (y, z) \in P(R) \).

By ST1P, \(S(X) = \{x, y, z\} = UC(X) \).

Case 3. \((z, x) \in I(R), (y, z) \in I(R) \).

By ST1P, \(S(X) = \{x, y, z\} = UC(X) \).

Case 4. \((z, x) \in I(R), (y, z) \in I(R) \).

By ST1P, \(S(X) = \{x, y, z\} = UC(X) \).

Case 5. \((z, x) \in I(R), (y, z) \in I(R) \).

Thus, \(\{z\} \times \{x, y\} \subset I(R) \). By TS, \(S(X) = S(\{z\}) \cup S(\{x, y\}) = \{x, z\} = UC(X) \). This proves Lemma 1.

A look at the proof of Lemma 1 reveals that we have essentially proved the following:

Lemma 2 Let \(S \) be a solution on \(X \) which satisfies SC, TS and ST1P. Then \(\forall A \in [X] \) with \(\#(A) \leq 3 \), \(S(A) = UC(A) \).

The above observation follows by noting that \(UC(A) \) depends on the restriction of \(R \) to \(A \) only.

Note. If in Lemma 1 (or, for that matter, in Lemma 2), we replace SC by CC and \(E \) we do not get the desired result as the following example reveals:

Example 4 Let \(X = \{x, y, z\} \) with \(x \neq y \neq z \neq x \). Let \(S(X) = \{x, y\} \), where \(R = \Delta(X) \cup \{(y, x), (y, z), (z, x)\} \). \(S \) satisfies CC, \(E \), TS and ST1P, the last two properties being satisfied vacuously. However, \(UC(X) \neq \{y\} \neq S(X) \). Note that \(S \) does not satisfy SC, since \((y, x), (y, z) \in P(R) \) and yet \(S(X) \neq \{y\} \).

In Dutta and Laslier (1999) we find the following property for a solution \(S \) on \(X \):

Type One Property (T1P): \(\forall x, y, z \in X : [(y, x) \in P(R), (x, z) \in P(R), (z, x) \in I(R)] \) implies \(S(\{x, y, z\}) = \{x, y\} \).

Clearly, T1P is weaker than ST1P. In fact, if we replace ST1P by T1P in Lemma 1 (or Lemma 2), we do not get the desired result as the following example reveals.

Example 5 Let \(X = \{x, y, z\} \) with \(x \neq y \neq z \neq x \). Let \(S(X) = \{x\} \), where \(R = \Delta(X) \cup \{(x, y), (y, z), (z, x)\} \). Clearly, \(S \) satisfies SC, TS, \(E \), CC and T1P (all vacuously). However, \(S \) violates ST1P, which under the present situation
We are now equipped to prove the following theorem:

Theorem 4 A solution S on X is the uncovered solution if and only if S satisfies SC, TS, ST1P, E and Con.

Proof. Proposition 3 tells us that the uncovered solution satisfies all the properties mentioned in the theorem. Hence, let S be a solution on X satisfying SC, TS, ST1P and Con. Let $R \in \Pi$. By Lemma 2, $S(A) = UC(A) \forall A \in [X]$ with $(A) \leq 3$. Suppose $S(A) = UC(A) \forall A \in [X]$ with $(A) = 1, \ldots, m$, and let $B \in [X]$ with $(B) = m + 1$. Let $x \in S(B)$. Suppose $m + 1 \geq 4$, for otherwise there is nothing to prove. Hence, by Con there exists a positive integer K and non-empty proper subsets B_1, \ldots, B_K such that $B = \bigcup_{i=1}^{K}$ and $x \in \bigcap_{i=1}^{K} S(B_i)$. Clearly $(B_i) \leq m$ whenever $i \in \{1, \ldots, K\}$.

By our induction hypothesis, $S(B_i) = UC(B_i) \forall i \in \{1, \ldots, K\}$. Thus, $x \in \bigcap_{i=1}^{K} UC(B_i)$, and by E, $x \in UC(B)$. Thus, $S(B) \subset UC(B)$. By an exactly similar argument with the roles of S and UC interchanged, we get $UC(B) \subset S(B)$. By a standard induction argument, the theorem is established.

Note. The above theorem is not valid without E or Con.

Example 6 Let $X = \{x, y, z, w\}$ where all of them are distinct. Let $S(X) = \{x\}$, $S(A) = A$ if $(A) = 3$, where $R = \Delta(X) \cup \{(x, y), (y, z), (z, w), (w, x), (x, z), (z, x), (y, w), (w, y)\}$. S satisfies SC, ST1P, TS (vacuously). Further, let $A_1 = \{x, y\}$ and $A_2 = \{x, z, w\}$. $x \in S(X)$ and $x \in S(A_1) \cap S(A_2)$. Further, $A_1 \cup A_2 = X$, with $A_1 \subset X$ and $A_2 \subset X$. Thus, S satisfies Con. However, $UC(X) = X \neq \{x\} = S(X)$. Observe that S does not satisfy E, since $y \in S(\{x, y, z\}) \cap S(\{y, z, w\})$ but $y \not\in S(X)$.

Example 7 Let X be as above. Let $S(X) = \{x, y\}$, $S(A) = \{x\}$ if $x \in A$, $S(A) = A$ if $x \not\in A$ where $R = \Delta(X) \cup (\{x\} \times X) \cup (\{y, z, w\} \times \{y, z, w\})$. Clearly, S satisfies SC, ST1P (vacuously), TS and E. But S does not satisfy Con: $y \in S(X)$. If we take any finite number of non-empty proper subsets of X whose union is X, at least one must contain 'x' and thus its choice set cannot contain 'y'.

5. Choice functions and extensions of rational choice theory

In this section we discuss the implications of the analysis reported in earlier sections of this paper, in the context of classical rational choice theory.

A choice function (on X) is a function $C : [X] \to [X]$ such that: $\forall A \in [X] : C(A) \subset A$. Given a choice function C, the binary relation revealed by C denoted R^C is defined as follows: $R^C \equiv \{(x, y) / x \in C(\{x, y\})\}$. Clearly, $R^C \in \Pi$. A choice function C is said to be a top-cycle choice function if
uncovered choice function if \(\forall A \in [X] : C(A) = \{ x \in A/ \text{if } y \in A \text{ then } (y, x) \not\in R^C(A) \} \), where \(R^C(A) = \{ (x, y) \in A \times A/ x \text{ covers } y \text{ via } R^C \text{ in } A \} \).

A choice function \(C \) is said to satisfy:

Strong Condorcet (SC): if \(\forall A \in [X] : [x \in A] \text{ and } [\forall y \in A \setminus \{ x \} : (x, y) \in P(R^C)] \) implies \([C(A) = \{ x \}]\);

Expansion Independence (EI): if \(\forall A \in [X] : [x \in C(A), y \in A, (y, z) \in R^C] \) implies \([x \in C(A \cup \{ z \})]\);

Existence of an Inessential Alternative (EIA): if \(\forall A \in [X] \) with \(\#(A) \geq 2 \) and \(\forall x \in C(A) \), there exists \(y \in A \) (possibly depending on \(A \) and \(x \)) such that \(x \in C(A \setminus \{ y \}) \).

As a consequence of the analysis reported earlier it follows that:

Theorem 5 A choice function \(C \) is a top cycle choice function if and only if \(C \) satisfies SC, EI and EIA.

A choice function \(C \) is said to satisfy:

Converse Condorcet (CC): if \(\forall A \in [X] \) and \(x \in A : [\forall y \in A \setminus \{ x \} : (y, x) \in P(R^C)] \) implies \([x \not\in C(A)]\);

Weak Existence of an Inessential Alternative (WEIA): if \(\forall A \in [X] \) with \(\#(A) \geq 4 \) and \(\forall x \in S(A) \), there exists \(y \in A \) (possibly depending on \(A \) and \(x \)) such that \(x \in C(A \setminus \{ y \}) \).

Since \(TC \) satisfies EIA it also satisfies WIEA. In fact we can now prove the following:

Theorem 6 Let \(C \) be any choice function which satisfies SC, CC and WEIA. Then, \(\forall A \in [X] : C(A) \subseteq G(A, T(R^C|A)) \).

Theorem 7 Let \(C \) be any choice function which satisfies SC and EIA. Then, \(\forall A \in [X] : C(A) \subseteq G(A, T(R^C|A)) \).

CC is not required once we replace WEIA by EIA.

A choice function \(C \) is said to satisfy:

Expansion (E): if \(\forall A, B \in [X] : C(A) \cap C(B) \subseteq C(A \cup B) \).

The relevant proposition in Moulin (1986) now translates to the following:

Proposition 4 Let \(C \) be any choice function satisfying SC and E. If \(\forall A \in [X] \) with \(\#(A) = 3 \) we have \(\{ x \in A/ \text{if } y \in A \text{ then } (y, x) \not\in R^C(A) \} \subseteq C(A) \) then \(\forall A \in [X] : \{ x \in A/ \text{if } y \in A \text{ then } (y, x) \not\in R^C(A) \} \subseteq C(A) \).

A choice function \(C \) is said to satisfy:

Contraction (Con): If \(\forall A \in [X] \) with \(\#(A) \geq 4 \), \([x \in C(A)] \) implies \([\text{there exists a positive integer } K \geq 2 \text{ and sets } A_1, \ldots, A_K \in [A]\setminus\{A\} \text{ such that } (i) \cup \)
A choice function C is said to satisfy:

Tie Splitting (TS): if $\forall A, B \in [X]$ with $A \cap B = \emptyset$: $[A \times B \subseteq I(R^C)]$ implies $C(A \cup B) = C(A) \cup C(B)$;

Strong Type 1 Property ($ST1P$): if $\forall x, y, z \in X : [(y, x) \in P(R^C), (x, z) \in P(R^C), (z, y) \in R^C]$ implies $C\{x, y, z\} = \{x, y, z\}$.

We now have the following theorem:

THEOREM 8 A choice function C is an uncovered choice function if and only if C satisfies SC, TS, $ST1P$, E and Con.

The analysis reported in this section reveals the close similarity between two distinct approaches to rational choice theory. In the first approach given a binary relation which reflects choice between pairs of elements, we try to axiomatically characterize solutions in terms of the given binary relation. In the second approach the binary relation that we consider is the one revealed by the choice set for pairs of elements, and we try to axiomatically characterize choice functions, in terms of the revealed binary relation.

Acknowledgement

An earlier version of this paper was presented at the first conference of the Society for Economic Design (SED 2000), held at Istanbul, Turkey from June 22 to 27, 2000. I would like to thank all the conference participants and in particular Fuad Aleskerov for providing constructive comments on this and related research. I would also like to thank two anonymous referees of this journal for their keen and detailed observations on this paper, which led to its eventual improvement and correction of many errors. One of the referees pointed out to me during the review process that discussions of the top cycle solution were also available in two papers by Hillinger (1975, 1978). I would like to thank the concerned referee for this observation.

References

Aumann and S. Hart, eds. Handbook of Game Theory, Vol. 1, Elsevier,
Amsterdam.
Choice Welfare, 2, 147–160.
271–291.
745–780.

Appendix

Here we provide a concise proof of Proposition 1. Let us prove the following
proposition (and then Proposition 1 follows as a consequence of this and Observation 2 preceding the statement of Proposition 1):

Proposition. \(\forall A \in [X]: UC(A) \subseteq TC(A). \)

Proof. Clearly the proposition holds for \(\#(A) = 1 \) or 2. Hence assume that the
proposition holds for \(\#(A) = 1, \ldots, K \) and now let \(\#(A) = K + 1 \). Suppose
\(x \in UC(A) \). If \(\forall y \in A \setminus \{x\}: (x, y) \in R \) then \(x \in TC(A) \). Hence, suppose
that there exists \(y \in A \setminus \{x\} \) such that \((y, x) \in P(R) \). Clearly, \(x \in UC(A \setminus \{y\}) \).
By the induction hypothesis \(x \in TC(A \setminus \{y\}) \). If \(\forall z \in A \setminus \{y\}: (y, z) \in P(R) \),
then \(UC(A) = \{y\} \), contradicting \(x \in UC(A) \). Hence, there exists \(z \in A \setminus \{y\}: \)
\((z, y) \in R \). Since \(z \in A \setminus \{y\} \) and \(x \in TC(A \setminus \{y\}) \) clearly, \((x, z) \in T(R|A) \).
Thus \((x, y) \not\in T(R|A) \). Thus, \(TC(A) \). The proposition now follows by induction on
the cardinality of \(A \).