Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 8, nr 2 | 117-130
Tytuł artykułu

Friction Sensitivity of the ε-CL-20 Crystals Obtained in Precipitation Process

Treść / Zawartość
Warianty tytułu
Języki publikacji
The purpose of this work was to obtain samples of CL-20 by precipitation process in a solvent/nonsolvent system, under variable process parameters such as: antisolvent kind, time of nonsolvent addition, stirrer speed, mass of seeded crystals of ε-CL-20. Received samples were studied in the aspect of their sensitivity to friction. As the results of the crystallization processes were prepared crystals of different sizes and shapes depend on applied parameters. It was affirmed, that applied antisolvent has essential influence on type of received crystals. CL-20 crystals of cuboid shape and sizes of 80-200 μm were obtained by recrystallization from ethyl acetate/chloroform. As the result of the recrystallization from ethyl acetate/xylene crystals with rounded edges were obtained. Crystals, from both samples, were mostly single and showed the lowest sensitivity to friction. Also, the crystals of irregular shape and sharp-edged agglomerates were obtained from systems with n-heptane, isooctane, cyclohexane and toluene, which revealed the highest friction sensitivities.

Opis fizyczny
Bibliogr. 16 poz.
  • Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland, Industrial Chemistry Research Institute, Rydygiera 8, 01-793 Warsaw, Poland,
  • [1] Xiaoling X., Lang X., Fengqi Z., Jianhua Y., Hongxu G., Siyu X., Qing P., Haixia H., Rongzu H., Dissolution Properties of Hexanitrohexaazaisowurtzitane (CL-20) in Ethyl Acetate and Acetone, J. Therm. Anal. Calorim., 2010, 99, 703-707.
  • [2] Bogdanova Yu.A., Gubin S.A., Korsunskii B.L., Pepekin V.I., Detonation Characteristics of Powerful Insensitive Explosives, Combust., Expl., Shock Waves, 2009, 45, 738-743.
  • [3] Foltz M.F., Conn C.L., Gracia F., Nichols III A.L., The Thermal Stability of the Polymorphs of Hexanitrohexaazaisowurtzitane, Part I, Propellants, Explos., Pyrotech., 1994, 19, 19-25.
  • [4] Nielsen A.T., Nissan R.A., Vanderah D.J., Coon C.L., Gilardi R.D., George C.F., Flippen-Anderson J., Polyazapolycyclics by Condensation of Aldehydes with Amines. 2. Formation of 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo [,11] dodecanes from Glyoxal and Benzylamines, J. Org. Chem., 1990, 55, 1459-1466.
  • [5] Kim J.H., Park Y.Ch., Yim Y.J., Han J-S., Crystallization Behavior of Hexanitrohexaazaisowurtzitane at 298 K and Quantitative Analysis of Mixtures of Its Polymorphs by FTIR, J. Chem. Eng. Jpn., 1998, 31, 478-481.
  • [6] Von Holtz E., Ornellas D., Foltz M.F., Clarkson J.E., The Solubility of ε-CL-20 in Selected Materials, Propellants, Explos., Pyrotech., 1994, 19, 206-212.
  • [7] Benazet S., Jacob G., Molecular Modeling in Crystal Engineering for Processing of Energetic Materials, Propellants, Explos., Pyrotech., 2003, 28, 287-295.
  • [8] Patil M.N., Gore G.M., Pandit A.B., Ultrasonically Controlled Particle Size Distributionof Explosives: A Safe Method, Ultrason. Sonochem., 2008, 15, 177- 187.
  • [9] Sivabalan R., Gore G.M., Nair U.R., Saikia A., Venugopalan S., Gandhe B.R., Study on Ultrasound Assisted Precipitation of CL-20 and Its Effect on Morphology and Sensitivity, J. Hazard. Mater., 2007, A139, 199-203.
  • [10] Johnson N.C., CL-20 Sensitivity Round Robin, Indian Head Division Naval Surface Warfare Center, 2003, MD 20640-5035.
  • [11] Nair U.R., Sivabalan R., Gore G.M., Geetha M., Asthana S.N., Singh H., Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-Based Formulations, Combust., Expl., Shock Waves, 2005, 41, 121-132.
  • [12] Hoffman D.M., Voids and Density Distributions in 2,4,6,8,10,12-Hexanitro- 2,4,6,8,10,12-Hexaazaisowurtzitane (CL-20) Prepared under Various Conditions, Propellants, Explos., Pyrotech., 2003, 28, 194-20
  • [13] Kim J.H., Yim Y.J., Effect of Particle Size on the Thermal Decomposition of ε-Hexanitrohexaazaisowurtzitane, J.Chem. Eng. Jpn., 1999, 32, 237-241.
  • [14] Tarver C.M., Chidester S.K., Nichols III A.L., Critical Conditions for Impact- and Shock-Induced Hot Spots in Solid Explosives, J. Phys. Chem., 1996, 100, 5794- 5799.
  • [15] Armstrong R.W., Ammon H.L., Elban W.L., Tsai D.H., Investigation of Hot Spot Characteristics in Energetic Crystals, Thermochim. Acta, 2002, 384, 303-313.
  • [16] Lee M.H., Kim J.H., Park Y.Ch., Kim W-S., Control of Crystal Structure and Its Defect of ε-HNIW Prepared by Evaporation Crystallization, Ind. Eng. Chem. Res., 2007, 46, 1500-1504.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.