Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 3, nr 4 | 23-40
Tytuł artykułu

Influence of Geometry and Material Properties on an Explosive's Gurney Velocity and Energy

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Experimental data from many scientific publications reveal that the copper cylinder test used internationally to measure an explosive's Gurney Velocity and Gurney Energy falls within a unique combination of geometry and material properties - factors affecting an explosive's measured performance. These data also support the need to use two separate propulsion events to model detonation-driven propulsion: a brisant first stage and a gas-dynamic second stage.

Opis fizyczny
Bibliogr. 33 poz.
  • [1] Randers-Pehrson G., An Improved Equation for Calculating Fragment Projection Angles, 2th Inf. Symp. Ballistics, 9-11 March, Daytona Beach, FL, American Defense Preparedness Assoc., Washington, D.C. 1976.
  • [2] Chou P. C., Carleone J., Hirsch E., Flis W. J., Ciccarelli R. D., Improved Formulas for Velocity, Acceleration, and Projection Angles, 16!h Int. Symp. Ballistics, (J.E. Backofen, Jr., Ed.), 27-29 Oct., Orlando, FL., American Defense Preparedness Assoc., 1981, pp. 286-296.
  • [3] Cooper P. W., Explosives Engineering, VCH Publishers, Inc., New York 1996.
  • [4] Explosive Effects and Applications, (Zukas J. A., Walters W. P., Eds), Springer-Verlag, New York 1998.
  • [5] Backofen J. E., Weickert C. A., The Effects of Plate Thickness and Explosive Properties on Projection from the End of a Charge, 16'h Int. Symp. Ballistics, 23-28 Sept., San Francisco, CA, American Defense Preparedness Assoc., 1996, pp. 641-650.
  • [6] Walters W. P., Zukas J. A., Fundamentals of Shaped Charges, John Wiley & Sons, New York 1989.
  • [7] Suceska M., Test Methods for Explosives, Springer-Verlag, New York 1995.
  • [8] Backofen J. E., The Use of Analytical Computer Models in Shaped Charge Design, Propellants, Explos., Pyrotech., 1993,18, 247-254.
  • [9] Kennedy J. E., Explosive Output for Driving Metal, in: Behavior and Utilization of Explosives in Engineering Design, 12th Annual Symp. of f he AS ME (New Mexico Section), (Davison L., Kennedy J. E., Coffey F., Eds.), Albuquerque, NM, 1972, pp. 109-124.
  • [10] Reaugh J. E., Souers P. C., A Constant-Density Gurney Approach to the Cylinder Test, Propellants, Explos., Pyrotech., 2004, 29(2), 124-128.
  • [11] Stronge W. J., Xiaoqing Ma, Lanting Zhao, Fragmentation of Explosively Expanded Steel Cylinders, Int. J. Mech. Sci., 1989, 57(11/12), 811-823.
  • [12] Kennedy J. E., The Gurney Model of Explosive Output for Driving Metal, in: Explosives Effects and Applications, (Zukas J. A., Walters W. P., Eds.), Springer-Verlag, New York 1998, pp. 221-257.
  • [13] Kennedy D. R., The Elusive (2E) VI 21th Annual Bomb & Warhead Section Meeting American Ordnance Assoc., Picatinny Arsenal, NJ, 22 Oct. 1969.
  • [14] Price D. R., Dependence of Damage Effects Upon Detonation Parameters of Organic High Explosives, Chem. Rev., 1959, 801-825.
  • [15] Dobratz B. M., Crawford P. C., LLNL Explosives Handbook: Properties of Chemical Explosives and Explosive Simulants, UCRL-52997, Lawrence Livermore National Lab., 31 Jan. 1985.
  • [16] Roth I, Correlation of the Empirical Gurney Constant with Detonation Parameters of the Driver Explosive, Int. Symp. Pyrotechnics and Explosives, 12-15 Oct., Beijing, China, China Academic Publishers 1987, pp. 629-634.
  • [17] Roth J., The Adiabatic Exponent - a Key to the Numerical Evaluation of the CJ State, 24th Int. Pyrotechnics Seminar, Chicago, 1998, pp. 469-481.
  • [18] Backofen J. E., Weickert C. A., Effect of an Inert Material s Thickness and Properties on the Ratio of Energies Imparted by a Detonation s Is' and 2nd Propulsion Stages, in: Shock Compression of Condensed Matter-2001, (Furnish M. D., Thadhani N. N., Hone Y, Eds.), Amer. Inst. Physics, 2002, pp. 954-957.
  • [19] Backofen J. E., The Effects of Cylinder Geometry and Material on Gurney Velocities and Gas-Push Gurney Velocities Measured During Cylinder Test Experiments, BRIGS Report 02-1, BRIGS Co., Oak Hill, VA, 24 Feb. 2002.
  • [20] Backofen J. E., Confirmation of the Effects of Cylinder Wall Thickness and Material Properties on Measurement of an Explosive's Gurney Velocity, BRIGS Note 03-1, BRIGS Co., Oak Hill, VA, 9 Feb. 2003.
  • [21] Backofen J. E., Additional Information on How a Cylinder's Wall Thickness and Material Properties Can Affect the Measurement of an Explosive's Gurney Velocity, BRIGS Note 03-2, BRIGS Co., Oak Hill, VA, 23 March 2003.
  • [22] Singh M., Suneja H. R., Bola M. S., Prakash S., Dynamic Tensile Deformation and Fracture of Metal Cylinders at High Rates of Strain, Int. J. Impact Engng, 2002, 27(9), Oct., 939-954.
  • [23] Vorob'ev A. I., Gainullin M. S., Zlygostev G. V, Rybakov A. P., Experimental Investigation of the Motion of Cylindrical Shells Under the Action of the Products of an Explosion in a Cavity, J. Appl. Mech. Tech. Phys., 1976, pp. 872-877, (trans. Zh. Prik. Mekh. Tekh. Fiz., 1974, 6,Nov.-Dec., 165-169).
  • [24] Slate P. M. B, Billings M. J. W, Fuller P. J. A., The Rupture Behaviour of Metals at High Strain Rates, J. Inst. Metals, 1967, 95, 244-251.
  • [25] Lee E. L., Hornig H. C., Kury J. W., Adiabatic Expansion of High Explosive Detonation Products, UCRL-50422, TID-4500, UC-4, Chem., Lawrence Radiation Lab., Univ. California, Livermore, CA, 2 May 1968.
  • [26] Olive F., Nicaud A., Marilleau J., Loichot R., Rupture Behaviour of Metals in Explosive Expansion of Shells, Inst, Phys. Conf. Series, No. 47: Ch. 2, pp. 243-251, and Stelly M.: Metallurgical Aspects of the Dynamic Expansion of Shells, ibid.,pp. 252-253, and Mechanical Properties at High Rates of Strain, (J. Harding, Ed.), Inst. Phys., Bristol and London 1979.
  • [27] Ivanov A. I., Syrainin M. A., Fedorenko A. G., Tsoi A. P., Fragmentation of Spherical Shells Under Blast Loading, Strength of Materials, 2001, 33(2), 150-156, (trans. Prob. Proch., 2001, 2, Mar.-Apr., 78-87).
  • [28] Backofen J. E., Weickert C., Initial Free-Surface Velocities Driven by Grazing Detonation Waves, in: Shock Compression of Condensed Matter-1999, (Furnish M. D,, Chhabildas L. C., Hixon R. S., Eds,), Amer. Inst. Physics, 2000, pp. 919-922.
  • [29] Drennov 0. B., Mikhailov A. L, Initial Stage in the Acceleration of Thin Plates in the Grazing Detonation Mode of a High Explosive, Fiz. Gor, Vzry., 1979,75(4), luly-Aug., 143-146, (trans. Comb. Expl. Shock Waves, 1980, 75(4), 539-542).
  • [30] Kiselev V. V., Estimation of the Properties of Metal Plates Propelled by the Sliding Detonation of Charges of Condensed Explosives in the Initial Phase of the Process, Fiz. Gor. Vzry., 37(1), 1995, Jan.-Feb., pp. 138-142, (trans. Comb. Expl. Shock Waves, 1995, 37(1), 134-137).
  • [31] Deribas A. A., Acceleration of Metal Plates by aTangential Detonation Wave, Prik. Mekh. Tekh. Fiz., 2000,47(5), Sept-Oct., 68-74, (trans. J. Appi Mech. Tech. Phys., 2000, 47(5), 824-830).
  • [32] Backofen J. E., Modeling a Material's Instantaneous Velocity during Acceleration Driven by a Detonation's Gas-Push, (Furnish M. D., Elert M., Russell T. P.,White C, T., Eds.), Amer. Inst. Physics, 2006, pp. 936-939.
  • [33] Hornberg H., Determination of Fume State Parameters from Expansion Measurements of Metal Tubes, Propellants, Explos., Pyrotech., 1986,11, 23-31.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.