Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 6, nr 3-4 | 239-254
Tytuł artykułu

Modeling for Detonation and Energy Release from Peroxides and Non-Ideal Improvised Explosives

Treść / Zawartość
Warianty tytułu
Języki publikacji
This work focuses on the development of models for predicting explosive power and air blast from the detonation of organic peroxides (TATP and HMTD) and non-ideal explosives involving ammonium nitrate, urea nitrate, and chlorates. CHEETAH calculations assuming ideal behaviour are in agreement with literature data for peroxides. However, the detonation behaviour of non-ideal explosives is dependent on charge size and confnement. This behaviour is investigated using thermo-chemical calculations with Kinetic CHEETAH, and reactive fow models with AUTODYN. A simplifed ignition and growth (I&G) model was calibrated using experimental charge diameter vs. VoD data. I&G models are used to predict the front curvature, reaction zone structure, and energy release from the non-ideal explosives. Detonation and air blast predictions for peroxides and unconfned and confned (paper, plastic, steel) non-ideal charges are presented.
Słowa kluczowe

Opis fizyczny
Bibliogr. 26 poz.
  • [1] Fried L.E., Howard W.M., Souers P.C., CHEETAH 2.0 User’s Manual, Lawrence Livermore National Laboratory Report, UCRL-MA-117541, Rev. 5, 1998.
  • [2] Souers P.C., Anderson S., Mercer J., Mcguire E., Vitello P., JWL++, A Simple Reactive Flow Code Package for Detonation, Propellants, Explos., Pyrotech., 2000, 25, 54-58.
  • [3] Wescott B.L., Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives, Shock Comp. Cond. Mat., 2007, 955, 433-436.
  • [4] Davis L.L., Hill L.G., ANFO Cylinder Tests, Shock Comp. Cond. Matt., 2001, 620, 165-168.
  • [5] Kuzmin V.V., Kozak G.D., Solov’ev M., Tuzkov Y.B., Forensic Investigation of Some Peroxides Explosives, New Trends in Research of Energetic Materials, Czech Republic, April 09-11, 2008, 386-392.
  • [6] Federoff B.T., Encyclopedia of Explosives and Related Items, Volumes 1-10, Picatinny Arsenal, Dover, New Jersey, USA, 1960-1983.
  • [7] Dubnikova F., Kosloff R., Almog J., Zeiri Y., Boese R., Itzhaky H., Alt A., Keinan E., Decomposition of Triacetone Triperoxide is an Entropic Explosion, J. Amer. Chem. Soc., 2005, 127, 1146-1159.
  • [8] Hiyoshi R.I., Nakamura J., Brill T.B., Thermal Decomposition of Organic Peroxides TATP and HMTD by T-Jump/FTIR Spectroscopy, Propellants, Explos., Pyrotech., 2007, 32(2), 127-134.
  • [9] ICT: ICT Database of Thermochemical Values, version 5, 2003.
  • [10] Meyer R., Kohler J., Holmberg A., Explosives, 5th ed., Wiley-VCH, Verlag GmbH, 2002.
  • [11] Dobratz B.M., Crawford P.C., LLNL Explosives Handbook, Lawrence Livermore National Laboratory, California, UCRL-52997, 1985.
  • [12] Akhavan J., The Chemistry of Explosives, RSC Paperbacks, The Royal Society of Chemistry, 1998.
  • [13] Cooper P.W., Comments on TNT equivalence, 20th International Pyrotechnics Seminar, Colorado Springs, CO, July 24-29, 1994.
  • [14] Souers P.C., Vitello P., ANFO Calculations for Sedat Ensen. LLNL, UCRL-TR- 204259. May 20, 2004.
  • [15] Bdzil J.B., Aslam T.D., Short M., DSD Front Models, Nonideal Explosive Detonation in ANFO, Proc. 12th Int. Symp. Det., San Diego, California, Aug. 11-26, 2002.
  • [16] Sandstrom F.W., Abernathy R.L. et al., Diameter Effect and Detonation Front Curvature of Ideal and Non-Ideal Explosives. Shock Compression of Condensed Matter, 1999, 505, 825-828.
  • [17] James H.R., Lambourn B.D. et al., An Investigation of the Detonation Characteristics of Some Non-Ideal Explosive Compositions Based Upon Ammonium Nitrate, Proc. 13th Int. Symp. Det., Norfolk, Virginia, July 23-28, 2006.
  • [18] Souers P.C., Wu B., Haselman L.C., Jr., Detonation Equation of State at LLNL, 1995, Lawrence Livermore National Laboratory, UCRL-TD-119262, Feb. 1, 1996.
  • [19] Campbell W., Engelke R., The Diameter Effect in High-Density Heterogeneous Explosives, Proc. 6th Int. Det. Symp., Coronado, California, Aug. 24-27, 1976, 642-652.
  • [20] Davis T.L., The Chemistry of Powder and Explosives, Angriff Press, Hollywood, CA. 1941, 1943 (reprint of two volumes).
  • [21] Lee J., Sandstrom F.W., Craig B.G. Persson P.-A., Detonation and Shock Initiation Properties of Emulsion Explosives, Proc. 9th Int. Symp. Det., Portland, OR, Aug. 28-Sept. 1, 1989, 573-583.
  • [22] Souers P.C., Garza R., Vitello P., Ignition & Growth and JWL++ Detonation Models In Coarse Zones, Propellants, Explos., Pyrotech., 2002, 27, 62-71.
  • [23] Souers P.C., Anderson S., Mcguire E., Murphy M.J., Vitello P., Reactive Flow and the Size Effect, ibid., 2001, 26, 26-32.
  • [24] Howard W.M., Fried L.E., Souers P.C., Vitello P.A., Calculation of Chemical Detonaion Waves with Hydrodynamics and Thermochemical Equation of State, Shock Compression of Condensed Matter - 2001, 12th APS Topical Conference, 2001, 620, 161-164,
  • [25] LASL Shock Hugoniot Data, (Marsh S.P., Ed.), Univ. Of Calif. Press, Berkley, California 1980.
  • [26] Souers P.C., Vitello P., Analytical Model of Reactive Flow, Propellants, Explos., Pyrotech., 2005, 32(5), 381-385.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.