Abstract. In this paper we prove that the extended spectrum $\Sigma(x)$, defined by W. Żelazko, of an element x of a pseudo-complete locally convex unital complex algebra A is a subset of the spectrum $\sigma_A(x)$, defined by G.R. Allan. Furthermore, we prove that they coincide when $\Sigma(x)$ is closed. We also establish some order relations between several topological radii of x, among which are the topological spectral radius $R_t(x)$ and the topological radius of boundedness $\beta_t(x)$.

Keywords: topological algebra, bounded element, spectrum, pseudocomplete algebra, topologically invertible element, extended spectral radius, topological spectral radius.

Mathematics Subject Classification: 46H05.

1. INTRODUCTION

A complex algebra A with a topology τ is a locally convex algebra if it is a Hausdorff locally convex space and its multiplication $(x, y) \mapsto xy$ is jointly continuous. The topology of A can be given by the family of all continuous seminorms on A.

Throughout this paper $A = (A, \tau)$ will be a locally convex complex algebra with unit e, A' its topological dual and $\{\|\cdot\|_\alpha : \alpha \in A\}$ the family of all continuous seminorms on A.

An element $x \in A$ is called bounded if for some non-zero complex number λ, the set $\{(\lambda x)^n : n = 1, 2, \ldots\}$ is a bounded set of A. The set of all bounded elements of A is denoted by A_0.

For $x \in A$ define the radius of boundedness $\beta(x)$ of x by

$$\beta(x) = \inf \left\{ \lambda > 0 : \left\{ \left(\frac{x}{\lambda} \right)^n : n \geq 1 \right\} \text{ is bounded} \right\}$$

adopting the usual convention that $\inf \emptyset = \infty$. Henceforth we shall use this convention without further mention.
Notice that $\lambda_0 > 0$ and $\{\left(\frac{x}{\lambda_0}\right)^n : n \geq 1\}$ bounded imply $\|\left(\frac{x}{\lambda}\right)^n\|_\alpha \to 0$ for all $|\lambda| > \lambda_0$ and $\alpha \in \Lambda$. Using this fact it is easy to see that $\beta(x) = \beta_0(x)$, where

$$\beta_0(x) = \inf \left\{ \lambda > 0 : \lim_{n \to \infty} \left(\frac{x}{\lambda}\right)^n = 0 \right\}.$$

In [1], by B_1 it is denoted the collection of all subsets B of A such that:

(i) B is absolutely convex and $B^2 \subset B$,

(ii) B is bounded and closed.

For any $B \in B_1$, let $A(B)$ be the subalgebra of A generated by B. From (i) we get

$$A(B) = \{\lambda x : \lambda \in \mathbb{C}, x \in B\}.$$

The formula

$$\|x\|_B = \inf \{\lambda > 0 : x \in \lambda B\}$$

defines a norm in $A(B)$, which makes it a normed algebra. It will always be assumed that $A(B)$ carries the topology induced by this norm. Since B is bounded in (A, τ), the norm topology on $A(B)$ is finer than its topology as a subspace of (A, τ).

The algebra A is called pseudo-complete if each of the normed algebras $A(B)$, for $B \in B_1$, is a Banach algebra. It is proved in [1, Proposition 2.6] that if A is sequentially complete, then A is pseudo-complete.

In [1], it is also introduced by G. R. Allan the spectrum $\sigma_A(x)$ of $x \in A$ as the subset of the Riemann sphere $\mathbb{C}_\infty = \mathbb{C} \cup \{\infty\}$ defined as follows:

(a) for $\lambda \neq \infty$, $\lambda \in \sigma_A(x)$ if and only if $\lambda e - x$ has no inverse belonging to A_0,

(b) $\infty \in \sigma_A(x)$ if and only if $x \notin A_0$.

In [1, Corollary 3.9] it is proved that $\sigma_A(x) \neq \emptyset$ for all x. We shall call $\sigma_A(x)$ the Allan spectrum.

The Allan spectral radius $r_A(x)$ of x is defined by

$$r_A(x) = \sup \{ |\lambda| : \lambda \in \sigma_A(x) \},$$

where $|\infty| = \infty$.

On the other hand, W. Żelazko defined in [4] the concept of extended spectrum of $x \in A$ in the way that we now recall.

As usual

$$\sigma(x) = \{ \lambda \in \mathbb{C} : \lambda e - x \notin G(A) \},$$

where $G(A)$ is the set of all invertible elements of A. The resolvent

$$\lambda \to R(\lambda, x) = (\lambda e - x)^{-1}$$

is then defined on $\mathbb{C} \setminus \sigma(x)$, but it is not always a continuous map. Put

$$\sigma_d(x) = \{ \lambda_0 \in \mathbb{C} \setminus \sigma(x) : R(\lambda, x) \text{ is discontinuous at } \lambda = \lambda_0 \}$$

and

\[\sigma_\infty(x) = \begin{cases} \emptyset & \text{if } \lambda \to R(1, \lambda x) \text{ is continuous at } \lambda = 0, \\ \infty & \text{otherwise.} \end{cases} \]

Then the extended spectrum of \(x \) is the set

\[\Sigma(x) = \sigma(x) \cup \sigma_d(x) \cup \sigma_\infty(x). \]

It is proved in [4, Theorem 15.2] that if \(A \) is complete, then \(\Sigma(x) \) is a non empty set of \(\mathbb{C}_\infty \) for every \(x \), and the extended spectral radius \(R(x) \) is defined by

\[R(x) = \sup \{ |\lambda| : \lambda \in \Sigma(x) \}. \]

We shall not assume that \(A \) is complete. Nevertheless, from now on we assume that \(\Sigma(x) \) is a non empty set of \(\mathbb{C}_\infty \) for every \(x \in A \).

2. COMPARISON OF \(\Sigma(x) \) AND \(\sigma_A(x) \)

Theorem 2.1. If \(A \) is pseudo-complete, then \(\Sigma(x) \subset \sigma_A(x) \) for any \(x \in A \).

Proof. Let \(\lambda \notin \sigma_A(x) \) with \(\lambda \neq \infty \), then \(\lambda \notin \sigma(x) \) and \(R(\lambda, x) \) is bounded. Hence \(R(\lambda, x) \in A(B) \) for some \(B \in B_1 \) ([1, Proposition 2.4]).

For any \(\mu \in \mathbb{C} \), we have that \((\mu e - x) = (\lambda e - x) + (\mu - \lambda) e \). Let \(0 < \gamma < \| R(\lambda, x) \|^{-1} \), then for \(|\mu - \lambda| < \gamma \), the formula

\[S_n(\mu) = R(\lambda, x) - (\mu - \lambda) R(\lambda, x)^2 + (\mu - \lambda)^2 R(\lambda, x)^3 - \ldots + (-1)^n (\mu - \lambda)^n R(\lambda, x)^{n+1}, \]

defines a Cauchy sequence in the Banach algebra \(A(B) \). Therefore, it converges in \(A(B) \) to \(R(\mu, x) \).

Given \(\varepsilon > 0 \), there exists \(0 < \delta < \gamma \) such that

\[\| S_n(\mu) - R(\lambda, x) \|_B \leq |\mu - \lambda| \| R(\lambda, x) \|_B \left(\frac{1}{1 - \gamma \| R(\lambda, x) \|_B} \right) < \varepsilon \]

for all \(n \) if \(|\lambda - \mu| < \delta \), which implies that \(\| R(\mu, x) - R(\lambda, x) \| \leq \varepsilon \) if \(|\lambda - \mu| < \delta \).

Hence \(R(\mu, x) \to R(\lambda, x) \) as \(\mu \to \lambda \), in \(A(B) \) and also in \((A, \tau) \), therefore \(\lambda \notin \sigma_A(x) \).

Thus, \(\lambda \notin \Sigma(x) \).

If \(\infty \notin \sigma_A(x) \), then \(x \) is bounded and there exists \(r > 0 \) such that the idempotent set \(\{ (\xi)^n : n \geq 1 \} \) is bounded. The closed absolutely convex hull \(B \) of \(\{ (\xi)^n : n \geq 1 \} \) belongs to \(B_1 \). Consider the Banach algebra \(A(B) \). Since \(\| \frac{x}{\beta} \|_B < 1 \) for every \(|\beta| > r \), we obtain

\[R\left(1, \frac{x}{\beta}\right) = e + \frac{x}{\beta} + \left(\frac{x}{\beta}\right)^2 + \ldots \]

in the Banach algebra \(A(B) \).
Since
\[\left\| R \left(\frac{1}{1 + \beta} \right) - e \right\|_B \to 0 \]
as \(|\beta| \to \infty \), we have that \(R (1, tx) \to e \) as \(t \to 0 \), in \(A (B) \) and hence in \((A, \tau) \) as well. Thus \(R (1, tx) \) is continuous in \(t = 0 \) and \(\infty \notin \Sigma(x) \). \qed

Lemma 2.2. Suppose \(A \) is pseudo-complete and let \(x \in A \) be such that the extended spectral radius \(R(x) < \infty \). Then for each \(f \in A' \) the function \(F(\lambda) = f (R (1, \lambda x)) \) is holomorphic in the open disc \(D(0, \delta) \), with \(\delta = \frac{1}{R(1)} \), where \(D(0, \delta) = \mathbb{C} \) when \(R(x) = 0 \). Furthermore,
\[F^{(n)} (\lambda) = n! f \left(R (1, \lambda x)^{n+1} x^n \right) \tag{2.1} \]
for every \(\lambda \in D(0, \delta) \) and \(n = 0, 1, 2, \ldots \). In particular,
\[F^{(n)} (0) = n! f(x^n) \]
for all \(n \geq 0 \).

Proof. We have that \(\lambda \notin \Sigma(x) \) whenever \(|\lambda| > R(x) \). This implies that the function
\[\lambda \to R (1, \lambda x) \]
is continuous in the open disc \(D = D(0, \delta) \). By definition \(F^{(0)} (0) = f (e) \) and \(F(\lambda) = f (R (1, \lambda x)) \) is holomorphic in \(D \) since
\[F^{(r)} (\lambda_0) = \lim_{\lambda \to \lambda_0} \frac{f (R (1, \lambda x)) - f (R (1, \lambda_0 x))}{\lambda - \lambda_0} = \lim_{\lambda \to \lambda_0} f \left(R (1, \lambda x) R (1, \lambda_0 x) \frac{\lambda - \lambda_0}{\lambda - \lambda_0} \right) = f \left(R (1, \lambda_0 x)^2 x \right) \]
for every \(\lambda_0 \in D \).

It is easy to obtain (2.1) by induction. \qed

Theorem 2.3. If \(A \) is pseudo-complete, then for any \(x \in A \) we have that \(\Sigma(x) = \sigma_A(x) \) if \(\Sigma(x) \) is closed in \(\mathbb{C}_\infty \).

Proof. Let \(x \in A \) and assume that \(\Sigma(x) \) is closed, then by Theorem 2.1 we only have to prove that \(\lambda_0 \notin \Sigma(x) \) implies \(\lambda_0 \notin \sigma_A(x) \).

Let \(\lambda_0 \notin \Sigma(x) \), with \(\lambda_0 \neq \infty \), then \(\lambda_0 e - x \in G(A) \). We shall show that \((\lambda_0 e - x)^{-1} \) is bounded. Since \(\Sigma(x) \) is closed, then there exists an open disc \(D(\lambda_0) \) around \(\lambda_0 \) such that \(\lambda e - x \in G(A) \) if \(\lambda \in D(\lambda_0) \) and \(R(\lambda, x) \) is continuous at \(\lambda = \lambda_0 \). Using the identity
\[(\lambda e - x)^{-1} - (\lambda_0 e - x)^{-1} = (\lambda_0 - \lambda)(\lambda e - x)^{-1}(\lambda e - x)^{-1}, \]
we obtain
\[\lim_{\lambda \to \lambda_0} \frac{R(\lambda, x) - R(\lambda_0, x)}{\lambda - \lambda_0} = -R(\lambda_0, x)^2. \]

Then for any \(f \in A' \) we get
\[\lim_{\lambda \to \lambda_0} \frac{f(R(\lambda, x)) - f(R(\lambda_0, x))}{\lambda - \lambda_0} = -f(R(\lambda_0, x)^2), \]

which implies that \(R(\lambda, x) \) is weakly holomorphic in \(\lambda = \lambda_0 \). By [1, Theorem 3.8 (i)] we obtain that \((\lambda_0e - x)^{-1}\) is bounded in \(A \). Therefore, \(\lambda_0 \notin \sigma_A(x) \).

If \(\infty \notin \Sigma(x) \), then some neighborhood of \(\infty \) does not intersect \(\Sigma(x) \) and we have that \(R(x) < \infty \). Let \(f \in A' \). By Lemma 2.2, the Taylor expansion of \(F(\lambda) = f(R(1, \lambda x)) \) around 0 is
\[F(\lambda) = f(\epsilon) + \lambda f(x) + \frac{2\lambda^2}{2!} f(x^2) + \ldots \]
for \(|\lambda| < \frac{1}{R(\epsilon, x)} \). In particular, \(\lim_{n \to \infty} f(\lambda_0^n x^n) = 0 \) for some \(\lambda_0 > 0 \) and then \(\{f(\lambda_0^n x^n) : n \geq 1\} \) is bounded; therefore \(\{(\lambda_0 x)^n : n \geq 1\} \) is bounded. Thus \(x \in A_0 \) and \(\infty \notin \sigma_A(x) \).

\[\Box \]

3. COMPARISON BETWEEN TOPOLOGICAL RADI

Let \(x \in A \), we say that \(x \) is **topologically invertible** if \(xA = Ax = A \), i.e. for each neighborhood \(V \) of \(e \) there exist \(a_\lambda, a_\lambda' \in A \) such that \(x a_\lambda e = x \in V \) and \(a_\lambda' x \in V \).

The **topological spectrum** \(\sigma_t(x) \) of \(x \) is the set
\[\sigma_t(x) = \{ \lambda \in \mathbb{C} : \lambda e - x \text{ is not topological invertible} \}. \]

The **topological spectral radius** \(R_t(x) \) is defined by
\[R_t(x) = \sup \{|\lambda| : \lambda \in \sigma_t(x)\}. \]

Having in mind the definition of \(\beta_0(x) \) we define the **topological radius of boundedness** \(\beta_t(x) \) of \(x \) by
\[\beta_t(x) = \inf \left\{ \lambda > 0 : \liminf_n \left\| \left(\frac{x}{\lambda} \right)^n \right\| = 0 \text{ for all } \alpha \in \Lambda \right\}. \]

In [2] the first author defined the **lower extended spectral radius** of \(x \) by
\[R_*(x) = \sup_{\alpha \in \Lambda} \liminf_n \sqrt[n]{\left\| x^n \right\|_\alpha} \]
and in [3] it is proved that if \(A \) is a complete locally convex unital algebra, then for any \(x \in A \) we have \(R_*(x) \leq r_0(x) \), and \(R_*(x) = r_0(x) \) if \(A \) is a unital \(B_0 \)-algebra (metrizable complete locally convex algebra), where
\[r_0(x) = \inf \{ 0 < r \leq \infty : \text{there exists } (a_n)_{n=0}^\infty, a_n \in \mathbb{C}, \text{ such that } \sum_{n=0}^\infty a_n \lambda^n \text{ has radius of convergence } r \text{ and } \sum_{n=0}^\infty a_n x^n \text{ converges in } A \} \]
(In [3] this radius is denoted by \(r_0(x) \).)
Here we have the following result.

Proposition 3.1. Let \(x \in A \). Then

\[
R_\ell(x) \leq \beta_\ell(x) = R_\ast(x) \leq \beta(x) \leq r_A(x).
\]

Proof. The first inequality is obvious if \(\beta_\ell(x) = \infty \), therefore let \(\beta_\ell(x) < \infty \). Given \(\lambda > \beta_\ell(x) \) and \(\alpha \in \Lambda \), there exists a subsequence \((n_k)_k = (n_k(\alpha))_k \) of the natural sequence \((n)_n \) such that \(\lim_{k \to \infty} \| \left(\frac{x}{\lambda} \right)^{n_k} \|_\alpha = 0 \). Then

\[
\lim_{k \to \infty} \left\| \left(e + \frac{x}{\lambda^2} + \ldots + \frac{x^{n_k-1}}{\lambda^{n_k}} \right) (\lambda e - x) - e \right\|_\alpha = 0.
\]

Hence \(\lambda e - x \) is topologically invertible for any such \(\lambda \) and it follows that \(R_\ell(x) \leq \beta_\ell(x) \).

If \(R_\ast(x) = \infty \), then \(\beta_\ell(x) \leq R_\ast(x) \). Now suppose \(R_\ast(x) < \mu < \lambda < \infty \). Then given \(\alpha \in \Lambda \) there exists a subsequence \((n_k)_k = (n_k(\alpha))_k \) of \((n)_n \) such that \(\| x^n \|_\alpha < \mu \) \(\lambda < \lambda \), which implies that \(\left\| \left(\frac{x}{\lambda} \right)^{n_k} \right\|_\alpha < \left(\frac{\mu}{\lambda} \right)^{n_k} \). Therefore, \(\beta_\ell(x) \leq \lambda \) and we have \(\beta_\ell(x) \leq R_\ast(x) \).

Assume that \(\beta_\ell(x) < R_\ast(x) \), then there exist \(\lambda > 0 \) and \(\alpha_0 \in \Lambda \) such that \(\beta_\ell(x) < \lambda < R_\ast(x) \) and \(\lambda < \liminf_n \sqrt[n]{\| x^n \|_{\alpha_0}} \). Hence \(\liminf_n \sqrt[n]{\| \left(\frac{x}{\lambda} \right)^{n} \|_{\alpha_0}} > 1 \). On the other hand, \(\lambda > \beta_\ell(x) \) implies that \(\liminf_n \sqrt[n]{\| \left(\frac{x}{\lambda} \right)^{n} \|_{\alpha_0}} = 0 \), which contradicts the previous statement. Thus, \(\beta_\ell(x) = R_\ast(x) \).

Since \(\beta(x) = \beta_\ell(x) \) it is clear that \(\beta_\ell(x) \leq \beta(x) \). Finally, \(\beta(x) \leq r_A(x) \) by [1, Theorem 3.12].

Corollary 3.2. If \(A \) is pseudo-complete, then

\[
R_\ell(x) \leq R_\ast(x) = \beta_\ell(x) \leq \beta(x) = r_A(x) \leq R(x)
\]

for every \(x \in A \).

Proof. Let \(x \in A \). We have by [1, Theorem 3.12] that \(\beta(x) = r_A(x) \). Thus we only have to prove that \(\beta(x) \leq R(x) \). This is obvious if \(R(x) = \infty \), so assume that \(R(x) < \infty \), therefore \(\infty \notin \Sigma(x) \). Applying Lemma 2.2 we obtain that the Taylor expansion about \(0 \) of \(F(\lambda) = f(R(1, \lambda x)) \) is

\[
F(\lambda) = f(e) + \lambda f(x) + \frac{2\lambda^2}{2!} f_2(x^2) + \ldots
\]

for \(f \in A' \) and \(|\lambda| < \frac{1}{R(x)} \).

Then \(\lim_{n \to \infty} \sqrt[n]{\| (\lambda x)^n \|_{\alpha_0}} = 0 \) for any \(0 < \lambda < \frac{1}{R(x)} \) and \(f \in A' \). In particular, for any such \(\lambda \) the set \(\{ (\lambda x)^n : n \geq 1 \} \) is weakly bounded and therefore \(\{ (\lambda x)^n : n \geq 1 \} \) is bounded in \(A \). It follows that \(\lambda \geq \beta(x) \) for every \(\lambda > R(x) \) and then \(\beta(x) \leq R(x) \). □

Proposition 3.3. If \(A \) is complete, then \(r_A(x) = \beta(x) = R(x) \) for all \(x \in A \).
Proof. It remains to prove that \(R(x) \leq \beta(x) \). We can assume that \(\beta(x) < \infty \). Let \(r > \beta(x) \), then we have that \(f \left(\left(\frac{x}{r} \right)^n \right) \to 0 \) for every \(f \in A' \), therefore

\[
\limsup_n \sqrt[n]{|f(x^n)|} \leq r
\]

for every \(f \in A' \). We get from [4, Theorem 15.6] that

\[
R(x) = R_2(x) = \sup_{f \in A'} \limsup_n \sqrt[n]{|f(x^n)|} \leq r.
\]

Therefore, \(R(x) \leq \beta(x) \).

Remark 3.4. In [2] it is constructed a unital \(B_0 \)-algebra \(A \) in which there is an element \(x \) such \(R_*(x) = 1 \) and \(R(x) = \infty \). On the other hand, if we consider the non-complete algebra \(A = (\mathcal{P}(t), ||\cdot||) \) of all complex polynomials with the norm \(||p(t)|| = \max_{0 \leq t \leq 1} |p(t)| \), then for every \(\lambda \neq 0 \) we have that \(\left\| \left(\frac{1}{\lambda} \right)^n \right\| = \frac{1}{|\lambda|^n} \). Therefore \(\beta(t) = 1 \), nevertheless \(R(t) = \infty \) since \(\lambda - t \) does not have an inverse for all \(\lambda \in \mathbb{C} \).

REFERENCES

Hugo Arizmendi-Peimbert
hugo@unam.mx

Universidad Nacional Autónoma de México
Instituto de Matemáticas
Ciudad Universitaria, México D.F. 04510 México

Angel Carrillo-Hoyo
angel@unam.mx

Universidad Nacional Autónoma de México
Instituto de Matemáticas
Ciudad Universitaria, México D.F. 04510 México
Jairo Roa-Fajardo
jaro@fajardol.com

Universidad del Cauca, Popayán-Colombia
Departamento de Matemáticas
Calle 5 No. 4-70, Popayán-Colombia

Received: February 9, 2011.
Revised: April 7, 2011.
Accepted: April 13, 2011.