Stanisław Bednarz*, Jan Artymiuk*

ZNACZENIE PRÓB OBCIĄŻENIOWYCH UKŁADÓW WYCIĄGOWYCH URZĄDZEŃ WIERTNICZYCH I EKSPLOATACYJNYCH**

1. WPROWADZENIE

Maszty i wieże oraz wyciągi wiertnicze, jako konstrukcje nośne urządzeń wiertniczych, należą do bardzo odpowiedzialnych elementów przy prowadzeniu prac związanych z wierceniem i obsługą otworów wiertniczych. Zagrożenie bezpieczeństwa ludzi oraz niezawodne działanie innych podzespołów również stanowią o ważności zagadnienia oceny stanu technicznego oraz eksploatacji. Jedną z najbardziej niepożądanych awarii, jakie mogą wystąpić na wiertni, jest złamanie, a czasem nawet tylko uszkodzenie masztu lub wieży wiertniczej. Złamanie masztu nieczęsto następuje natychmiast. Natomiast dość często duża awaria lub złamanie masztu/wieży jest poprzedzone małym uszkodzeniem, nieskłaniającym do natychmiastowej naprawy. Wykonanie bezzwłocznie małych zabiegów naprawczych niejednokrotnie eliminuje konieczność wykonania pracochłonnym robót remontowych pociągających za sobą duże koszty (rys. 1). Poważna część uszkodzeń, którym ulegają maszty/wieże wiertnicze, a szczególnie spawane maszty podnoszone do pionu przy pomocy własnego napędu, powstaje w czasie transportu, montażu i demontażu. Większości z nich można uniknąć przez odpowiednie planowanie prac, zwłaszcza gdy wykonuje je wyszkolona i doświadczona załoga.

Podczas tych operacji konieczna jest znajomość i stosowanie się do zasad i zaleceń podanych w odpowiednich instrukcjach producenta.

Już na etapie projektowania konstruktorzy uwzględniają pewien zapas bezpieczeństwa między maksymalnym naprężeniem dopuszczalnym i minimalną wyszczególnioną granicą plastyczności materiału, z którego dana konstrukcja jest wykonywana. Każda konstrukcja masztu wymaga określenia parametrów znamionowych dla założonych obciążeń projektowych [3]. Konstrukcje te należy tak zaprojektować, aby spełniały lub przewyższały stawiane im wymagania. Przyjmowane parametry znamionowe należy traktować, w przypadku operacji wiertniczych, jako wartości, które nie mogą być przekroczone przy występowaniu

* Wydział Wiertnictwa, Nafty i Gazu, AGH, Kraków
** Praca wykonana w ramach badań statutowych
drgań i udarów. Występowanie przyśpieszeń, udarów, oddziaływanie odstawnego prze-
wodu oraz obciążenia spowodowane wiatrem powodują obniżenie znamionowego obciąże-
nia haka właściwego dla warunków statycznych. A zatem obciążenie znamionowe jest to
maksymalne obciążenie operacyjne zarówno statyczne, jak i dynamiczne działające na
urządzenie.

Rys. 1. Złamany maszt telescopowy TR 800, część górna z koroną upadła na rampę

 Wieże wiertnicze są konstrukcjami znacznie bardziej statecznymi w porównaniu
z masztami. W tej kategorii konstrukcji nośnych najmniej stateczne są maszty pochylone
telescopowe, wymagające odciągów stabilizujących.

2. OBCIĄŻENIA DZIAŁAJĄCE NA MASZTY/WIEŻE WIERTNICZE

I tak maszty lub wieże bez lin odciągowych, jako konstrukcje stacjonarne, podlegają
następującym obciążeniom:
– maksymalne znamionowe obciążenie haka w warunkach statycznych dla podanej licz-
by lin wielokrążka ruchomego,
– obciążenie wywołane maksymalną znamionową prędkością wiatru, wyrażoną w me-
trach na sekundę, bez pełnego obciążenia podbudowy ciężarem odstawionych rur,
obciążenie wywołane maksymalną znamionową prędkością wiatru, wyrażoną w metrach na sekundę, z pełnym obciążeniem podbudowy ciężarem odstawionych rur,
obciążenie związane z odstawieniem w szybie maksymalnej liczby pasów rur o danej średnicy, tzn. z pełnym obciążeniem podbudowy,
maksymalna znamionowa obciążalność wysięgnika wciągarki linowej,
maksymalna znamionowa wartość obciążenia w warunkach statycznych przy prędkościach wiatru od zera do maksymalnej prędkości znamionowej, przy pełnym obciążeniu podbudowy odstawionym przewodem i przy maksymalnej liczbie lin wielokrążka ruchomego.

Na maszt z odciągami linowymi mogą oddziaływać następujące rodzaje obciążeń:
maksymalne znamionowe obciążenie haka w warunkach statycznych dla określonej liczby lin wielokrążka ruchomego oraz podanego przez wytwórnię schematu rozmieszczenia odciągów,
obciążenie związane z maksymalną znamionową prędkością wiatru, wyrażoną w metrach na sekundę, bez uwzględnienia obciążenia od odstawionego przewodu,
obciążenie związane z maksymalną znamionową prędkością wiatru, wyrażoną w metrach na sekundę, przy pełnym obciążeniu odstawionym przewodem,
obciążenie związane z odstawieniem w szybie maksymalnej liczby pasów rur o danej średnicy, tzn. z pełnym obciążeniem podbudowy.

Coraz częściej słyszy się o postępującym starzeniu się urządzeń i sprzętu w firmach wiertniczych i potencjalnym niebezpieczeństwie poważnych awarii, zwłaszcza w przypadku masztów i wież wiertniczych. Dążenie do zmniejszenia powagi szkody wywołanej awarią oraz zmniejszenie prawdopodobieństwa powstania uszkodzenia to generalne wytyczne w budowie maszyn i urządzeń. Zagrożenia związane są zasadniczo z powstaniem pęknięć, złamań, utratą stateczności, przyspieszeniem/opóźnieniem mas, energią kinetyczną mas w ruchu kontrolowanym lub niekontrolowanym. Dlatego nieodzowne są obok konieczności inwestowania w nowe urządzenia, także opracowanie odpowiednich wytycznych eksploatacji, poszerzone szkolenie załóg oraz korzystanie z dostępnych nowych technologii. W kraju, do znaczenia tego zagadnienia powinno się przywiązywać nie mniejszą wagę niż w krajach rozwijających nowe konstrukcje maszyn i urządzeń wiertniczych dla górnictwa nafty i gazu.

Wartość maksymalnej siły obciążającej układ wyciągowy podczas próby obciążenia powinna się znajdować w zakresie między znamionowym udźwigu maksymalnym a obciążeniem niszczącym konstrukcję. Relacje między obciążeniem próbym, udźwigiem maksymalnym, obciążeniem projektowym i obciążeniem niszczącym odnoszą się i są związane z konstrukcyjnym współczynnikiem bezpieczeństwa. Wartość obciążenia znamionowego jest równa wartości obciążenia projektowego.

Pewne części składowe układu, takie jak: wielokrążki ruchome, haki, zawiesia elewatorowe, elevatory i krążki linowe wielokrążka stałego podlegają wymaganiami odpowiednich norm. Dotyczą one przeglądów, obsługi konserwacyjnej, napraw i modernizacji oraz projektowania, wytwarzania i badań wyżej wymienionych wyrobów.

W eksploatacji ważną rolę spełnia m.in. znajomość obciążenia znamionowego, natomiast w produkcji – współczynnika bezpieczeństwa, którego wartość jest uzależniona od
niepewności założeń projektowych, przypadkowego powstania nadmiernych obciążeń, niejednorodności materiału, zachowania wymiarów, ważności urządzenia i zagrożenia stwarzanego podczas jego eksploatacji.

\[
\sigma_{dop} = \frac{R_{r\min}}{F_{DS}}
\]

gdzie:
- \(R_{r\min} \) – wyszczególniona minimalna granica plastyczności,
- \(E(R_r) \) – wartość oczekiwana granicy plastyczności,
- \(\sigma_{\Delta e} \) – odchylenie standardowe,
- \(F_{DS} \) – konstrukcyjny współczynnik bezpieczeństwa.

W przypadku występowania jednego z następujących warunków: a) dla obszarów pozostających w styku lub b) dla obszarów o koncentracji wysokich naprężeń spowodowanych geometrią części oraz innych obszarów o wysokich gradientach naprężeń, gdzie naprężenie średniowe w przekroju jest mniejsze lub równe maksymalnemu, dopuszczalnemu naprężeniom może być przeprowadzona analiza wytrzymałościowa oparta na teorii plastyczności, tam gdzie jest to uzasadnione przez dokumentację konstrukcyjną. W takich obszarach analiza sprężystości powinna dawać wszystkie wartości naprężeń poniżej naprężeń średnich [5], w przypadku analizy plastycznego płynięcia znaminowe naprężenie zastępcze, zgodnie z teorią H-M-H, nie powinno przekraczać maksymalnych dopuszczalnych naprężeń dopuszczalnych obliczonych równaniem (2):

\[
\sigma_{dop} = \frac{R_{m\min}}{F_{DS}}
\]

gdzie \(R_{m\min} \) oznacza wyszczególnioną minimalną wytrzymałość na rozciąganie.

Analiza stateczności powinna być przeprowadzona zgodnie z powszechnie przyjętymi teoriami wyboczienia. Analiza zmęczeniowa powinna być przeprowadzona zgodnie z powszechnie przyjętymi teorią i powinna opierać się na okresie czasu nie mniejszym niż 20 lat, chyba że uzgodniono inaczej. Wieże wiertnicze są konstrukcjami znacznie bardziej statecznymi w porównaniu z masztami. W tej kategorii konstrukcji nośnych najmniej stateczne są maszty pochylone teleskopowe, wymagające stabilizujących odciągów.
3. PRÓBY OBCIĄŻENIOWE

1. Zmontowano układ obciążający przy olinowaniu 4×3.
2. Zainstalowano wskaźniki położenia masztu do jego konstrukcji; pierwszy na wysokości przegubu teleskopowego, drugi w koronie oraz zanotowano wyjściowe wskazanie ciężarówskazu.
3. Sprawdzono stan połączeń osprzętu, układu wyciągowego i hamulcowego oraz stan odciągów linowych.
4. Obciążono maszt przy pomocy wyciągu do wartości 265 kN i utrzymywano obciążenie przez 10 minut.
5. Zredukowano obciążenie do zera.
6. Ponownie obciążono maszt do wartości 265 kN przy pomocy wyciągu, a następnie przy pomocy silnika hydraulicznego wpiętego w linię martwą i zasilanego z oddzielnej pomp hydraulicznej obciążono maszt do wartości 471 kN i utrzymywano obciążenie przez 11 minut.
7. Następnie zredukowano obciążenie do zera.
8. Ostatecznie obciążono maszt przy pomocy wyciągu i silnika hydraulicznego do wartości 795 kN i utrzymywano obciążenie przez 14 minut (rys. 5.7 i 5.8). Przed zrealizowaniem tego punktu podczas napinania liny martwej przy pomocy silnika doszło do spadku obciążenia (od wartości 495 kN w dół) z powodu poślizgu w hamulcu mechanicznym taśmowym. Ponowne obciążanie przebiegało bez zakłóceń.

W punktach 3, 4, 5, 6, 7, 8 i 9 dokonano pomiarów zmian położenia konstrukcji masztu przy pomocy mechanicznych wskaźników położenia (tab. 1).

Tabela 1
Próba obciążeniowa masztu

<table>
<thead>
<tr>
<th>Faza</th>
<th>Czas trwania fazy, min</th>
<th>Obciążenie, kN</th>
<th>Odkształcenie, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>265</td>
<td>P = 7, K = 8</td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>11</td>
<td>471</td>
<td>P = 10, K = 15</td>
</tr>
<tr>
<td>V</td>
<td>59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VI</td>
<td>14</td>
<td>795</td>
<td>P = 15, K = 20</td>
</tr>
<tr>
<td>VII</td>
<td>10</td>
<td>0</td>
<td>Wychylenie = 7 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P = 0, K = 0, Wych = 0</td>
</tr>
</tbody>
</table>

Punkt P – Węzeł połączeniowy teleskopowy dwóch sekcji masztu.
Punkt K – Połączenie korony ze świecą masztu.
Wychylenie sprężyste nastąpiło w stronę otworu wiertniczego.

587
Przegląd konstrukcji masztu po próbie obciążeniowej, jak i wyniki pomiarów położenia punktów kontrolnych w konstrukcji masztu będące odzwierciedleniem wielkości odkształcenia, pokazują, że maszt posiada sztywność i nośność konstrukcji zapewniającą bezpieczną eksploatację w badanym zakresie obciążenia.

Przeprowadzone badania wyciągu Brewster N-4A oraz dokonana próba obciążeniowa pozwoliły na stwierdzenie zadowalającego stanu technicznego układu wyciągowego [2]. Pomiary wykazały, że napięcie w linach odciągowych ulega zmianie w wyniku obciążania haka. Z uwagi na przestrzenne położenie sprzętu wiertniczego względem długiej konstrukcji kratownicowej masztu występuje złożony układ sił obciążających i rączek. Przyłożenie obciążenia na haku powoduje również odkształcenia w fundamentowaniu, w kotwieniu, zmiany geometryczne w połączeniach sworznionych i innych, samych lin i ich połączeń, itp. Niezależnie od wymienionych odkształceń, największy wpływ w czasie eksploatacji konstrukcji masztu można wywierać na napięcia w linach odciągowych, bo poprawianie fundamentowania, kotew czy też połączeń jest bardzo utrudnione. Znaczenie tej kontroli jest w obecnym czasie tym bardziej istotne, że w wiertnictwie krajowym i światowym użytkowane są urządzenia i maszyny o długim czasie eksploatacji. Dlatego tę czynność, aczkolwiek pracochlonną, po montażu urządzenia powinno się dokładnie wykonywać.

Ocienia próbné, jakim podlega konstrukcja masztu lub wieży wiertniczej, są wywierane w zaplanowanych etapach [1]. Na rysunku 2 widoczne jest zamocowanie czujnika pomiarowego w układzie wyciągowym masztu samojezdznego urządzenia, natomiast etapy pomiarowe podano w tabeli 1. Przed próbą należy sprawdzić pozio­mowanie platformy, prawidłowość posadowienia wiertnicy na ramie, wartość napięcia w linach odciągowych, pewnosc sprzęgnięcia elementów w ciągu obciążeniowym. Próbę obciążeniową masztu urządzenia do obsługi odwrtów MSC-250 produkcji krajowej wykonanego przez Eurotech przeprowadzono w czterech etapach. W I etapie obciążono maszt do wartości ~71,2 kN (~8,0 T) i po trzech minutach zmniejszono obciążenie do zera, następnie po 30 minutowej przerwie dokonano II etapu obciążenia do wartości ~142,3 kN (~16,0 T) i utrzymywano to obciążenie przez 5 min., po czym zredukowano do zera. Po następnej 30 minutowej przerwie przystąpiono do III etapu próby obciążeniowej. Maszt wraz z układem wyciągowym obciążono do wartości ~224,4 kN (~25,0 T) i utrzymywano to obciążenie przez 5 min. Po kolejnej 30 minutowej przerwie obciążono maszt do maksymalnej ustalonej wartości ~293,6 kN (~33,0 T) i utrzymywano to obciążenie przez kolejne 5 min., następnie zredukowano obciążenie do zera. Przegląd konstrukcji nie ujawnił niesprawności działania układu i trwałych odkształceń konstrukcji masztu.

Podobne podejście jest przyjęte przy wykonywaniu prób obciążeniowych podbudów masztów i wież wiertniczych, przy czym wymagane jest wówczas wykonanie odpowiedniego uzbrojenia pomocniczego w celu wywołania właściwych dla operacji roboczych obciążeń konstrukcji, w różnych jej strefach.

Konstrukcje masztu lub wieży poddaje się badaniom przy obciążeniu o wartości uzgodnionej między użytkownikiem/zamawiającym a producentem. Po wykonaniu próby obciążenia należy przeprowadzić kontrolę wzrokową elementów konstrukcji zgodnie z odpowiednimi wymaganiami podanymi w normie [4]. Konstrukcja powinna posiadać tabliczkę znamionową ze znakowaniem literami SR2 i podaną wartością stosunku obciążenia próby do obciążenia projektowego (obciążenie próby/obciążenie projektowe), na przykład SR2-1,0.
4. PODSUMOWANIE

Maszty i wieże wieńcę oraz wyciągi wieńcze, jako konstrukcje nośne urządzeń wieńczych, należą do bardzo ważnych elementów przy prowadzeniu prac związanych z wierceniem otworów wieńczych i obsługą odwiertów.

Sprzęt wieńczyce będący wyposażeniem masztu lub wieży powinien być projektowany, wytwarzany i poddawany próbom w taki sposób, żeby pod każdym względem odpowiadał jego zamierzonemu zastosowaniu. Sprzęt ten powinien bezpiecznie przenosić obciążenie, do którego jest przystosowany, aby uzyskać zapewnienie bezpiecznego prowadzenia operacji.

Użytkowanie powyższych konstrukcji i sprzętu zaleca się prowadzić w temperaturach, które zostały określone mi. podczas badań materiałowych, procesu projektowania i wytwarzania [5]. Systematyczne wykonywanie przeglądów konstrukcji masztu/wieży oraz sprzętu towarzyszącego połączone z pomiarami weryfikacyjnymi stanowi ważny czynnik w racjonalnej eksploatacji urządzenia wieńczącego. Identyfikacja zagrożeń oraz ocena ryzyka powinna być przeprowadzona na etapie projektowania i weryfikowana na etapie eksploatacji urządzenia wieńczszego.

LITERATURA

