WPŁYW GRUBOŚCI OBUDOWY SKLEPIONEJ BETONOWEJ NA WARTOŚCI SIŁ WewnętrZNYCH W TEJ OBUDOWIE***

1. Wstęp

Wprowadzenie do praktyki polskiego budownictwa podziemnego obudów powłokowych rzuciło nowe światło na zagadnienia wpływu grubości obudowy na kształtowanie się wartości sił wewnętrznych w obudowie wyrobisk długotrwałych, a w konsekwencji na nośność obudów sklepionych i powłokowych [5, 7].

2. Budowa modelu obliczeniowego

Badania numeryczne przeprowadzono na grupie najczęściej występujących w górnictwie przekrojów oraz parametrów górotworu. Ze względu na charakter badawczy pracy
wybrano 3 różne skały charakteryzujące się współczynnikiem Protodiakonowa $f = 1,5; 3; 5$. W każdym przypadku utworzono obudowę z 3 różnych klas betonu (C12/15; C16/20; C20/25), aby sprawdzić, jak wpływa to na kształtowanie się wartości sił wewnętrznych. Grubość obudowy zwiększono od 0,15 m do 0,45 m co 5 cm. Dało to możliwość dokładnego zbadania procesów zachodzących w modelu. Do obliczeń przyjęto przekroje wyrobisk zgodne z normą PN-G-06010: 1998 [3]. Modele wykonano dla 3 różnych szerokości wyrobiska: $A = 2; 4; 5$ m.

Na podstawie tak przygotowanych modeli analitycznych przeprowadzono obliczenia statyczne za pomocą programu komputerowego Autodesk Robot Structural Analysis Professional metodą MES (elementów skośnych).

Tabela 1

<table>
<thead>
<tr>
<th>Zestaw</th>
<th>f</th>
<th>klasa betonu</th>
<th>g m</th>
<th>h_2 m</th>
<th>R_0 m</th>
<th>E_y MPa</th>
<th>q_{st} kPa</th>
<th>q_{st1} kPa</th>
<th>q_{st2} kPa</th>
<th>n</th>
<th>S_1 m</th>
<th>S_2 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>1,5</td>
<td>C12/15</td>
<td>0,15</td>
<td>2,015</td>
<td>2,11</td>
<td>480,1</td>
<td>136,6</td>
<td>31,5</td>
<td>55,7</td>
<td>12</td>
<td>0,486</td>
<td>0,448</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td>0,20</td>
<td>2,019</td>
<td>2,14</td>
<td>469,4</td>
<td>139,2</td>
<td>32,1</td>
<td>56,6</td>
<td>12</td>
<td>0,492</td>
<td>0,449</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td>0,25</td>
<td>2,024</td>
<td>2,16</td>
<td>459,1</td>
<td>141,7</td>
<td>32,7</td>
<td>57,5</td>
<td>12</td>
<td>0,498</td>
<td>0,450</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td>0,30</td>
<td>2,029</td>
<td>2,19</td>
<td>449,3</td>
<td>144,3</td>
<td>33,3</td>
<td>58,4</td>
<td>12</td>
<td>0,504</td>
<td>0,451</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td>0,35</td>
<td>2,034</td>
<td>2,21</td>
<td>439,9</td>
<td>146,8</td>
<td>33,9</td>
<td>59,3</td>
<td>12</td>
<td>0,509</td>
<td>0,452</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td>0,40</td>
<td>2,039</td>
<td>2,24</td>
<td>430,8</td>
<td>149,3</td>
<td>34,5</td>
<td>60,2</td>
<td>12</td>
<td>0,515</td>
<td>0,453</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>0,45</td>
<td>2,044</td>
<td>2,27</td>
<td>422,2</td>
<td>151,9</td>
<td>35,1</td>
<td>61,1</td>
<td>12</td>
<td>0,521</td>
<td>0,454</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td>0,15</td>
<td>2,015</td>
<td>2,11</td>
<td>480,1</td>
<td>136,6</td>
<td>31,5</td>
<td>55,7</td>
<td>12</td>
<td>0,486</td>
<td>0,448</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td>0,20</td>
<td>2,019</td>
<td>2,14</td>
<td>469,4</td>
<td>139,2</td>
<td>32,1</td>
<td>56,6</td>
<td>12</td>
<td>0,492</td>
<td>0,449</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td>0,25</td>
<td>2,024</td>
<td>2,16</td>
<td>459,1</td>
<td>141,7</td>
<td>32,7</td>
<td>57,5</td>
<td>12</td>
<td>0,498</td>
<td>0,450</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td>0,30</td>
<td>2,029</td>
<td>2,19</td>
<td>449,3</td>
<td>144,3</td>
<td>33,3</td>
<td>58,4</td>
<td>12</td>
<td>0,504</td>
<td>0,451</td>
</tr>
<tr>
<td>Zestaw</td>
<td>f</td>
<td>klasa betonu</td>
<td>(g)</td>
<td>(h_{c})</td>
<td>(R_{0})</td>
<td>(E_{w}) MPa</td>
<td>(q_{N1}) kPa</td>
<td>(q_{N2}) kPa</td>
<td>(n)</td>
<td>(S_{m})</td>
<td>(S_{n})</td>
<td>m</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--------------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1,5</td>
<td>C16/20</td>
<td>0,35</td>
<td>2,034</td>
<td>2,21</td>
<td>439,9</td>
<td>146,8</td>
<td>33,9</td>
<td>59,3</td>
<td>12</td>
<td>0,509</td>
<td>0,452</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td>0,40</td>
<td>2,039</td>
<td>2,24</td>
<td>430,8</td>
<td>149,3</td>
<td>34,5</td>
<td>60,2</td>
<td>12</td>
<td>0,515</td>
<td>0,453</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td>0,45</td>
<td>2,044</td>
<td>2,27</td>
<td>422,2</td>
<td>151,9</td>
<td>35,1</td>
<td>61,1</td>
<td>12</td>
<td>0,521</td>
<td>0,454</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>C20/25</td>
<td>0,15</td>
<td>2,015</td>
<td>2,11</td>
<td>480,1</td>
<td>136,6</td>
<td>31,5</td>
<td>55,7</td>
<td>12</td>
<td>0,486</td>
<td>0,448</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td>0,20</td>
<td>2,019</td>
<td>2,14</td>
<td>469,4</td>
<td>139,2</td>
<td>32,1</td>
<td>56,6</td>
<td>12</td>
<td>0,492</td>
<td>0,449</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td>0,25</td>
<td>2,024</td>
<td>2,16</td>
<td>459,1</td>
<td>141,7</td>
<td>32,7</td>
<td>57,5</td>
<td>12</td>
<td>0,498</td>
<td>0,450</td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
<td>0,30</td>
<td>2,029</td>
<td>2,19</td>
<td>449,3</td>
<td>144,3</td>
<td>33,3</td>
<td>58,4</td>
<td>12</td>
<td>0,504</td>
<td>0,451</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td>0,35</td>
<td>2,034</td>
<td>2,21</td>
<td>439,9</td>
<td>146,8</td>
<td>33,9</td>
<td>59,3</td>
<td>12</td>
<td>0,509</td>
<td>0,452</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td>0,40</td>
<td>2,039</td>
<td>2,24</td>
<td>430,8</td>
<td>149,3</td>
<td>34,5</td>
<td>60,2</td>
<td>12</td>
<td>0,515</td>
<td>0,453</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td>0,45</td>
<td>2,044</td>
<td>2,27</td>
<td>422,2</td>
<td>151,9</td>
<td>35,1</td>
<td>61,1</td>
<td>12</td>
<td>0,521</td>
<td>0,454</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>C12/15</td>
<td>0,15</td>
<td>2,040</td>
<td>2,35</td>
<td>774,2</td>
<td>58,6</td>
<td>5,4</td>
<td>14,0</td>
<td>12</td>
<td>0,424</td>
<td>0,453</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td>0,20</td>
<td>2,053</td>
<td>2,38</td>
<td>758,5</td>
<td>59,8</td>
<td>5,6</td>
<td>14,2</td>
<td>12</td>
<td>0,429</td>
<td>0,456</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td>0,25</td>
<td>2,067</td>
<td>2,41</td>
<td>743,4</td>
<td>61,0</td>
<td>5,7</td>
<td>14,5</td>
<td>12</td>
<td>0,434</td>
<td>0,459</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td>0,30</td>
<td>2,080</td>
<td>2,44</td>
<td>729,0</td>
<td>62,2</td>
<td>5,8</td>
<td>14,7</td>
<td>12</td>
<td>0,439</td>
<td>0,462</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td>0,35</td>
<td>2,093</td>
<td>2,46</td>
<td>715,0</td>
<td>63,5</td>
<td>5,9</td>
<td>14,9</td>
<td>12</td>
<td>0,444</td>
<td>0,465</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td>0,40</td>
<td>2,107</td>
<td>2,49</td>
<td>701,6</td>
<td>64,7</td>
<td>6,0</td>
<td>15,2</td>
<td>12</td>
<td>0,449</td>
<td>0,468</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td>0,45</td>
<td>2,120</td>
<td>2,52</td>
<td>688,7</td>
<td>65,8</td>
<td>6,1</td>
<td>15,4</td>
<td>12</td>
<td>0,454</td>
<td>0,471</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>C16/20</td>
<td>0,15</td>
<td>2,040</td>
<td>2,35</td>
<td>774,2</td>
<td>58,6</td>
<td>5,4</td>
<td>14,0</td>
<td>12</td>
<td>0,424</td>
<td>0,453</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td>0,20</td>
<td>2,053</td>
<td>2,38</td>
<td>758,5</td>
<td>59,8</td>
<td>5,6</td>
<td>14,2</td>
<td>12</td>
<td>0,429</td>
<td>0,456</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td>0,25</td>
<td>2,067</td>
<td>2,41</td>
<td>743,4</td>
<td>61,0</td>
<td>5,7</td>
<td>14,5</td>
<td>12</td>
<td>0,434</td>
<td>0,459</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td>0,30</td>
<td>2,080</td>
<td>2,44</td>
<td>729,0</td>
<td>62,2</td>
<td>5,8</td>
<td>14,7</td>
<td>12</td>
<td>0,439</td>
<td>0,462</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td>0,35</td>
<td>2,093</td>
<td>2,46</td>
<td>715,0</td>
<td>63,5</td>
<td>5,9</td>
<td>14,9</td>
<td>12</td>
<td>0,444</td>
<td>0,465</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td>0,40</td>
<td>2,107</td>
<td>2,49</td>
<td>701,6</td>
<td>64,7</td>
<td>6,0</td>
<td>15,2</td>
<td>12</td>
<td>0,449</td>
<td>0,468</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td>0,45</td>
<td>2,120</td>
<td>2,52</td>
<td>688,7</td>
<td>65,8</td>
<td>6,1</td>
<td>15,4</td>
<td>12</td>
<td>0,454</td>
<td>0,471</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td>C12/15</td>
<td>0,15</td>
<td>2,040</td>
<td>2,35</td>
<td>774,2</td>
<td>58,6</td>
<td>5,4</td>
<td>14,0</td>
<td>12</td>
<td>0,424</td>
<td>0,453</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>0,20</td>
<td>2,053</td>
<td>2,38</td>
<td>758,5</td>
<td>59,8</td>
<td>5,6</td>
<td>14,2</td>
<td>12</td>
<td>0,429</td>
<td>0,456</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td>0,25</td>
<td>2,067</td>
<td>2,41</td>
<td>743,4</td>
<td>61,0</td>
<td>5,7</td>
<td>14,5</td>
<td>12</td>
<td>0,434</td>
<td>0,459</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td>0,30</td>
<td>2,080</td>
<td>2,44</td>
<td>729,0</td>
<td>62,2</td>
<td>5,8</td>
<td>14,7</td>
<td>12</td>
<td>0,439</td>
<td>0,462</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td>0,35</td>
<td>2,093</td>
<td>2,46</td>
<td>715,0</td>
<td>63,5</td>
<td>5,9</td>
<td>14,9</td>
<td>12</td>
<td>0,444</td>
<td>0,465</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td>0,40</td>
<td>2,107</td>
<td>2,49</td>
<td>701,6</td>
<td>64,7</td>
<td>6,0</td>
<td>15,2</td>
<td>12</td>
<td>0,449</td>
<td>0,468</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td>0,45</td>
<td>2,120</td>
<td>2,52</td>
<td>688,7</td>
<td>65,8</td>
<td>6,1</td>
<td>15,4</td>
<td>12</td>
<td>0,454</td>
<td>0,471</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td>C16/20</td>
<td>0,15</td>
<td>2,048</td>
<td>2,46</td>
<td>1279,2</td>
<td>26,2</td>
<td>0,77</td>
<td>3,39</td>
<td>12</td>
<td>0,412</td>
<td>0,455</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td>0,20</td>
<td>2,063</td>
<td>2,48</td>
<td>1254,3</td>
<td>26,8</td>
<td>0,78</td>
<td>3,44</td>
<td>12</td>
<td>0,417</td>
<td>0,459</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td>0,25</td>
<td>2,079</td>
<td>2,52</td>
<td>1230,4</td>
<td>27,4</td>
<td>0,80</td>
<td>3,50</td>
<td>12</td>
<td>0,422</td>
<td>0,462</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td>0,30</td>
<td>2,095</td>
<td>2,54</td>
<td>1207,3</td>
<td>27,9</td>
<td>0,82</td>
<td>3,56</td>
<td>12</td>
<td>0,427</td>
<td>0,466</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td>0,35</td>
<td>2,111</td>
<td>2,57</td>
<td>1185,1</td>
<td>28,5</td>
<td>0,84</td>
<td>3,61</td>
<td>12</td>
<td>0,432</td>
<td>0,469</td>
</tr>
</tbody>
</table>

TABELA 1 cd.
3. Wyniki obliczeń

Obliczenia przeprowadzono dla 189 modeli różniących się m.in. szerokością wyrobiska, jakością otaczającego górotworu, klasy betonu użytego w obudowie. Wyniki zestawiono w sze- reg wykresów obrazujących kształtowanie się wartości sił wewnętrznych ze względu na:
— zależność wartości momentu zginającego maksymalnego i minimalnego oraz sił podłużnych odpowiadających tym wartościom od grubości obudowy uwzględniając różne wartości wskaźnika Protodiakonowa \(f \),
— zależność wartości momentu zginającego maksymalnego i minimalnego oraz sił podłużnych odpowiadających tym wartościom od grubości obudowy uwzględniając różne klasy betonu.

W trakcie analizy wyników stwierdzono fakt przemieszczania się wartości maksymalnej i minimalnej momentów zginających wzdłuż obudowy. W skrajnych przypadkach wartość maksymalna dla małych grubości występowała w odciosach, aby wraz ze zwiększaniem się grubości obudowy „przeskoczyć” w centralny punkt sklepienia. Zjawisko to zобразowano na wykresach poprzez wprowadzenie osobnych krzywych zarówno dla odciosów jak i sklepienia. Brano pod uwagę tylko wartości maksymalne dla krzyżujących się krzywych wartości momentów zginających.
Dla wszystkich punktów znaleziono równania krzywych regresji o postaci \(y = ax^2 + bx + c \) (z użyciem pakietu statystycznego MS Excel), przy czym stwierdzono, że wpływ klasy betonu jest pomijalny. Wyznaczono więc równania krzywych dla klasy betonu C12/15, a przykładowe wyniki dla szerokości wyrobiska 4 m zestawiono w tabeli 2.

TABELA 2

<table>
<thead>
<tr>
<th>Zestaw</th>
<th>f</th>
<th>klasa betonu</th>
<th>g m</th>
<th>(M_{\text{max}}) kN(\cdot)m</th>
<th>(F_{\text{max}}) kN</th>
<th>(M_{\text{min}}) kN(\cdot)m</th>
<th>(F_{\text{min}}) kN</th>
<th>równanie krzywej</th>
<th>współczynnik determinacji (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>0,15</td>
<td>C12/15</td>
<td>22,80</td>
<td>456,19</td>
<td>-21,88</td>
<td>450,75</td>
<td>Momentów zginających:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>0,20</td>
<td></td>
<td>24,03</td>
<td>460,21</td>
<td>-20,06</td>
<td>452,94</td>
<td>max [O]:</td>
<td>-25,47x^2 + 27,30x + 19,4</td>
<td>0,982</td>
</tr>
<tr>
<td>66</td>
<td>0,25</td>
<td></td>
<td>24,70</td>
<td>465,91</td>
<td>-21,24</td>
<td>419,30</td>
<td>max [S]:</td>
<td>87,71x^2 + 89,27x – 6,645</td>
<td>0,999</td>
</tr>
<tr>
<td>67</td>
<td>0,30</td>
<td></td>
<td>28,04</td>
<td>300,04</td>
<td>-27,61</td>
<td>425,68</td>
<td>min:</td>
<td>-378,9x^2 + 128,4x – 31,48</td>
<td>0,988</td>
</tr>
<tr>
<td>68</td>
<td>0,35</td>
<td></td>
<td>35,58</td>
<td>298,00</td>
<td>-34,17</td>
<td>469,36</td>
<td>Sił podłużnych:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>0,40</td>
<td></td>
<td>43,13</td>
<td>296,95</td>
<td>-41,60</td>
<td>479,85</td>
<td>max [O]:</td>
<td>389,8x^2 – 54,55x + 455,5</td>
<td>0,999</td>
</tr>
<tr>
<td>70</td>
<td>0,45</td>
<td></td>
<td>51,18</td>
<td>296,53</td>
<td>-49,37</td>
<td>491,39</td>
<td>max [S]:</td>
<td>102,1x^2 – 101,1x + 321,1</td>
<td>0,997</td>
</tr>
<tr>
<td>71</td>
<td>0,15</td>
<td>C16/20</td>
<td>28,45</td>
<td>299,26</td>
<td>-27,88</td>
<td>425,13</td>
<td>min:</td>
<td>1628x^2 – 815,8x + 537,5</td>
<td>0,747</td>
</tr>
<tr>
<td>72</td>
<td>0,20</td>
<td></td>
<td>36,07</td>
<td>297,20</td>
<td>-34,88</td>
<td>469,08</td>
<td>Momentów zginających:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>0,25</td>
<td></td>
<td>43,69</td>
<td>296,10</td>
<td>-42,40</td>
<td>479,62</td>
<td>max [O]:</td>
<td>78,61x^2 + 33,86x + 19,4</td>
<td>0,999</td>
</tr>
<tr>
<td>74</td>
<td>0,30</td>
<td></td>
<td>51,80</td>
<td>295,68</td>
<td>-50,10</td>
<td>491,20</td>
<td>max [S]:</td>
<td>1628x^2 – 815,8x + 537,5</td>
<td>0,747</td>
</tr>
<tr>
<td>75</td>
<td>0,35</td>
<td></td>
<td>58,07</td>
<td>295,04</td>
<td>-57,80</td>
<td>492,76</td>
<td>min:</td>
<td>1628x^2 – 815,8x + 537,5</td>
<td>0,747</td>
</tr>
<tr>
<td>76</td>
<td>0,40</td>
<td></td>
<td>64,31</td>
<td>294,46</td>
<td>-65,50</td>
<td>494,32</td>
<td>Momentów zginających:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>0,45</td>
<td></td>
<td>70,61</td>
<td>293,80</td>
<td>-73,20</td>
<td>495,88</td>
<td>max:</td>
<td>78,61x^2 + 33,86x – 1,938</td>
<td>0,999</td>
</tr>
<tr>
<td>78</td>
<td>0,15</td>
<td>C20/25</td>
<td>28,65</td>
<td>298,87</td>
<td>-28,01</td>
<td>424,86</td>
<td>min:</td>
<td>1628x^2 – 815,8x + 537,5</td>
<td>0,747</td>
</tr>
<tr>
<td>79</td>
<td>0,20</td>
<td></td>
<td>36,31</td>
<td>296,81</td>
<td>-35,21</td>
<td>468,93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0,25</td>
<td></td>
<td>43,96</td>
<td>295,68</td>
<td>-42,79</td>
<td>479,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>0,30</td>
<td></td>
<td>52,11</td>
<td>295,26</td>
<td>-50,57</td>
<td>491,10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>0,35</td>
<td></td>
<td>58,26</td>
<td>294,80</td>
<td>-58,26</td>
<td>492,76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>0,40</td>
<td></td>
<td>64,31</td>
<td>294,46</td>
<td>-65,50</td>
<td>494,32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>0,45</td>
<td></td>
<td>70,61</td>
<td>293,80</td>
<td>-73,20</td>
<td>495,88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>0,15</td>
<td></td>
<td>4,98</td>
<td>149,55</td>
<td>-6,61</td>
<td>193,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>0,20</td>
<td></td>
<td>7,93</td>
<td>149,72</td>
<td>-10,32</td>
<td>198,85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>0,25</td>
<td></td>
<td>11,31</td>
<td>149,1</td>
<td>-14,55</td>
<td>203,91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>0,30</td>
<td></td>
<td>15,34</td>
<td>148,25</td>
<td>-19,20</td>
<td>209,54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>0,35</td>
<td></td>
<td>19,65</td>
<td>147,06</td>
<td>-24,66</td>
<td>215,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>0,40</td>
<td></td>
<td>24,20</td>
<td>146,04</td>
<td>-30,45</td>
<td>222,97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>0,45</td>
<td></td>
<td>29,17</td>
<td>145,07</td>
<td>-36,47</td>
<td>230,62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>0,15</td>
<td>C16/20</td>
<td>5,05</td>
<td>149,42</td>
<td>-6,70</td>
<td>193,43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zależność wartości sił wewnętrznych od grubości obudowy dla klas betonu (C12/15, C16/20 i C20/25) oraz dla wartości współczynnika \(f = 3 \) przedstawiono na rysunkach 1–4.
Rys. 1. Zależność maksymalnego momentu zginającego od grubości obudowy

Rys. 2. Zależność odpowiadającej siły podłużnej od grubości obudowy (w miejscu występowania momentu maksymalnego)

Rys. 3. Zależność minimalnego momentu zginającego od grubości obudowy
Podsumowanie

Jednym z etapów projektowania obudowy skleionej wyrobisk podziemnych jest obliczenie wartości sił wewnętrznych. Siły te zależą od wartości obciążenia oraz od parametrów projektowanej obudowy, stąd potrzeba przewidywania, jak zmiana tych parametrów wpłynie na jej nośność. W niniejszej pracy zbadano wpływ dwóch parametrów (grubości obudowy, klasa betonu).

Analiza przyniosła zaskakujące wyniki. Najistotniejszym jest zauważenie faktu, że dla dużych obciążeń (odpowiadających wartości wskaźnika Protodiakonowa 1,5 lub 3) lokalizacja występowania wartości maksymalnego momentu zginającego przemieszcza się. Dla małych grubości obudowy wartość maksymalna występuje w odciosach wyrobiska i wraz z rosnącą grubością przemieszcza się w kierunku klucza sklepienia. Znajomość grubości obudowy, przy której dana zmiana zachodzi, pozwoli projektować zmienne przekroje poprzeczne obudów (zgrubienia tylko w miejscach występowania momentu maksymalnego). Na powyższy fakt ma znaczący wpływ także kształtowanie się wartości ściskających sił podłużnych. Jak wiadomo, gdy na belkę zginaną działamy siłę ściskającą, poprawiamy jej nośność (podobieństwo do belek sprężonych). Analizując wyniki stwierdzono, że siły ściskające rosną zdecydowanie szybciej i mają większe wartości w odciosach. Dobranie więc odpowiedniej grubości obudowy, przy której moment zginający wystąpi w odciosach, poprawi nośność danego przekroju.

Analiza ujawniła także, jak wpływa zwiększenie grubości obudowy na wartość maksymalnego momentu zginającego: zwiększenie grubości obudowy (pośrednio wyłomu) jedynie o 30 cm (z 15 do 45 cm) powoduje zwiększenie wartości momentu maksymalnego (w skłepieniu) około pięciokrotnie. Ostatnim wnioskiem płynącym z analizy momentów maksymalnych jest stwierdzenie, iż wartość ich rośnie znacznie szybciej w sklepieniu (dominuje zginanie) niż w odciosach (dominuje ściskanie).

Wszystkie powyższe wnioski odnoszą się do momentu zginającego dodatniego (tj. powodującego przemieszczenie obudowy do środka wyrobiska). Gdy rozpatrzymy moment
występujący zawsze w pobliżu wezgłowia sklepienia (moment minimalny ujemny) wyginający obudowę na zewnątrz wyrobiska, zauważymy, że niezależnie od wartości obciążeń i szerokości wyrobiska zachowanie jego jest niezmienne. Największych (co do modulu) wartości momentu ujemnego spodziewa się należy dla \(f = 1,5 \) oraz nie występują znaczne zmiany lokalizacji ekstremum wraz ze wzrostem grubości obudowy. Siły ściskające także stosunkowo dobrze można opisać w tym przypadku wielomianem drugiego stopnia.

 Wyniki badań także potwierdzają tezę, że dla obudów powłokowych (nieznaczna grubość) słusznie pomija się występowanie momentów zginających. Na rysunkach 1 i 3 widać tendencję zbliżania się wartości momentu maksymalnego i minimalnego do 0 wraz z malejącą grubością obudowy.

 Drugim zbadanym parametrem była zmienna klasa betonu. Przebadano każdy model dla trzech klas, tj.: C12/15; C16/20 i C20/25. W każdym przypadku, różnica wynikająca z zastosowania różnych klas była praktycznie niezauważalna. Można więc pomijać wpływ różnych klas betonu na wartości sił wewnętrznych w obudowie (w badanym zakresie klas betonu).

LITERATURA

[1] BN-82/0434-07 Wyrobiska korytarzowe i komorowe — Obudowa powłokowa — Wytyczne projektowania i obliczeń statycznych