Alojzy Dzierzęga*, Jan Gmyrek*

Wpływ dodatkowych pomiarów osnowy za pomocą GPS na dokładność wytycenia obiektu metodą biegunową

1. Wprowadzenie

Istnieje pogląd, że osnowy realizacyjne powinny być bardzo dokładne. Wynika to głównie z tego, że z osnow tych wykonuje się pomiary realizacyjne mające na celu wytyczenie obiektu, często z dużą dokładnością. Oczywiście w takim przypadku same pomiary realizacyjne są wykonywane bardzo dokładnie. Na dokładność wytyczenia obiektu wpływa dokładność samego tyczenia oraz dokładność osnowy. W związku z tym powstaje zasadnicze pytanie: czy i jak bardzo osnowa wpływa na poszczególne parametry dokładnościowe wytyczonego obiektu? Odpowiedzi na wymienione pytania są tematem niniejszego opracowania. Analizę przeprowadzono na przykładzie osnowy i obiektu przedstawionych na rysunku 1.

![Rys. 1. Szkic osnowy i obiektu. 1–2 – punkty osnowy](image)

* Wydział Geodezji Górnictwa i Inżynierii Środowiska, Akademia Górniczo-Hutnicza, Kraków

** Praca wykonana w ramach badań statutowych nr 11.11.150.312 finansowanych przez KBN w 2007 r.
W osnowie założono pomiar kątów ze średnim błędem \(m_\alpha = 30^\circ \), oraz pomiar długości ze średnim błędem \(m_d = 3,5 \) mm. Średnia długość boków osnowy wynosi 539 m. Obiekt w kształcie prostokąta o wymiarach 120 × 60 m jest usytuowany tak, że dłuższe boki są równoległe do boku osnowy 5–6. Przyjęto jednakową dokładność pomiaru osnowy i tyczenia.

Spośród metod sytuacyjnego tyczenia punktów najbardziej popularna jest metoda biegunowa. Metoda ta jest chętnie stosowana ze względu na jej prostotę, a przede wszystkim ze względu na aktualne możliwości sprzętowe – tachimetry elektroniczne umożliwiające nie tylko wygodne, ale również bardzo dokładne tyczenie punktów. Stąd przeprowadzono analizę tyczenia obiektu metodą biegunową z punktu osnowy 5 przy założeniu, że dodatkowy pomiar GPS jest wykonywany na punkcie 5 oraz na punktach 5 i 6. Do analizy przyjęto współrzędne punktów osnowy oraz współrzędne punktów obiektu. Na podstawie tych danych zestawiano równania obserwacyjne bez wyrazów wolnych dla przewidywanych do pomiaru kątów i długości w osnowie oraz równania dla kątów i długości przewidywanych do odkładania przy tyczeniu metodą biegunową. Równania te równoważono przyjętymi błędami pomiaru długości \(m_d \) oraz błędami pomiaru kątów \(m_\alpha \). Następnie obliczano równania normalne i ich odwrotność, czyli macierze kowariancji Q. W celu uwzględnienia wpływu dodatkowych pomiarów osnowy za pomocą GPS do równań obserwacyjnych dopisywano równania na błądność współrzędnych punktów. Obliczenia prowadzono w dwóch wariantach: w pierwszym przyjęto pomiar GPS na punkcie 5, a w drugim na punktach 5 i 6. W obu wariantach przyjęto dwa rodzaje dokładności pomiaru GPS charakteryzowane średnim błędem położenia punktu wynoszącym 2 mm oraz 8 mm i oznaczono je następująco: GPS2 i GPS8.

Do określenia dokładności wytycenia obiektu przyjęto następujące parametry: średnie błędy położenia punktów, średnie błędy długości boków, średnie błędy kątów i średnie błędy kierunków boków tyczonego obiektu. Błędy te liczono jako średnie błędy funkcji wielkości wyrównanych.

2. Dodatkowy pomiar GPS na punkcie 5

Średnie błędy położenia punktów obiektu zestawiono w tabeli 1, gdzie w kolumnie drugiej podano wymienione błędy otrzymane z wyrównania łącznego osnowy i konstrukcji tyczącej bez pomiarów GPS. Kolumna trzecia zawiera średnie błędy położenia punktów obiektu w przypadku pomiaru GPS ze średnim błędem położenia punktu 2 mm. W czwartej kolumnie średni błąd pomiaru GPS wynosi 8 mm. Z tabeli 1 wynika, że dodanie pomiaru GPS na punkcie osnowy, z którego wykonujemy tyczenie, zmniejsza średni 2,8 razy średnie błędy położenia punktów
obiektu, natomiast czterokrotne zmniejszenie dokładności pomiaru GPS (średni błąd położenia punktu 8 mm) zwiększyło średni błądy położenia punktów obiektu średnio o 10%.

Tabela 1. Średnie błędy położenia punktów (GPS na 5)

<table>
<thead>
<tr>
<th>Nr. pkt</th>
<th>Bez GPS (m_p) [mm]</th>
<th>GPS2 (m_p) [mm]</th>
<th>GPS8 (m_p) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>41,9</td>
<td>17,6</td>
<td>18,6</td>
</tr>
<tr>
<td>10</td>
<td>40,4</td>
<td>12,4</td>
<td>14,0</td>
</tr>
<tr>
<td>11</td>
<td>40,3</td>
<td>11,4</td>
<td>13,1</td>
</tr>
<tr>
<td>12</td>
<td>41,9</td>
<td>16,9</td>
<td>17,9</td>
</tr>
</tbody>
</table>

3. Dodatkowy pomiar GPS na punktach 5 i 6

Średnie błędy położenia punktów obiektu zestawiono w tabeli 2, gdzie w kolumnie drugiej podano wymienione błędy otrzymane z wyrównania łącznego osnowy i konstrukcji tyczącej bez pomiarów GPS. Kolumna trzecia zawiera średni błędy położenia punktów obiektu w przypadku pomiaru GPS na punktach 5 i 6 ze średnim błędem położenia punktu 2 mm. W czwartej kolumnie średni błąd pomiaru GPS na tych punktach wynosi 8 mm. Z tabeli 2 wynika, że dodanie pomiaru GPS na dwóch punktach osnowy, z których wykonujemy tyczenie, zmniejsza 3,2 razy średni błądy położenia punktów obiektu, natomiast czterokrotne zmniejszenie dokładności pomiaru GPS zwiększyło średni błędy położenia punktów obiektu o 10%. Porównanie obu tabel pozwala stwierdzić, że dodatkowy pomiar GPS na punkcie orientującym, zmniejsza przeciętną wartość średnich błędów położenia punktów obiektu o 10%.

Tabela 2. Średnie błędy położenia punktów (GPS na 5 i 6)

<table>
<thead>
<tr>
<th>Nr pkt</th>
<th>Bez GPS (m_p) [mm]</th>
<th>GPS2 (m_p) [mm]</th>
<th>GPS8 (m_p) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>41,9</td>
<td>11,6</td>
<td>12,9</td>
</tr>
<tr>
<td>10</td>
<td>40,4</td>
<td>12,3</td>
<td>13,5</td>
</tr>
<tr>
<td>11</td>
<td>40,3</td>
<td>14,2</td>
<td>15,2</td>
</tr>
<tr>
<td>12</td>
<td>41,9</td>
<td>13,6</td>
<td>14,7</td>
</tr>
</tbody>
</table>
4. Średnie błędy długości i kierunków boków oraz kątów

W obu analizowanych wariantach obliczono również średnie błędy długości i kierunków boków oraz średnie błędy kątów tyczonego obiektu. We wszystkich analizowanych przypadkach średnie błędy długości boków kształtują się w przedziale 4,2±4,9 mm i są niezależne od tego, czy i z jaką dokładnością są robione dodatkowe pomiary GPS, ponieważ osnowa nie wpływa na średnie błędy długości boków tyczonego obiektu.

Analogicznie rzecz wygląda w przypadku kątów, gdzie we wszystkich analizowanych wariantach średnie błędy kształtują się w przedziale 28,7±29,4° i są niezależne od tego, czy i z jaką dokładnością są robione dodatkowe pomiary GPS, ponieważ osnowa nie wpływa na średnie błędy kątów tyczonego obiektu.

Osnowa wpływa na średnie błędy kierunków boków obiektu i wpływ ten jest równy średniemu błędowi boku osnowy, z którego wykonano tyczenie. Zatem im dokładniejsze są dodatkowe pomiary GPS, tym mniejsze są średnie błędy kierunków boków osnowy i tym samym mniejsze średnie błędy kierunków boków tyczonego obiektu.

Zatem jeżeli zależy nam na zmniejszeniu średnich błędów położenia punktów tyczonego obiektu, należy zastosować dodatkowy pomiar za pomocą GPS na tym punkcie osnowy, z którego będzie wykonywane tyczenie. Dodatkowe pomiary osnowy za pomocą GPS nie zmniejszą średnich błędów długości i kątów tyczonego obiektu, natomiast znacznie zmniejszają średnie błędy kierunków boków tyczonego obiektu.

Literatura

