CLEANING CAPABILITY OF DIFFERENT FLUID SYSTEMS USED IN COILED TUBING DRILLING

1. INTRODUCTION

Coiled tubing drilling applications are becoming more widely used because of their major advantages over the conventional jointed pipe drilling methods. Some of the advantages are:

- drilling and trip under pressure,
- continuous circulation while tripping,
- slimhole and thru tubing capability,
- small location footprint.

Before using coiled tubing (CT) for drilling practice, serious engineering considerations have to be taken into account because of coiled tubing limitations such as:

- small diameters,
- limited reach in horizontal wells.
- hydraulic limitations etc.

Cuttings transport during drilling (either conventionally or with coiled tubing) has a major impact on the economics of the drilling process. Inefficient hole cleaning can lead to numerous problems such as stuck pipes, reduced weight on the bit and reduced rate of penetration, lost of circulation, additional costs because of adding additives in the drilling fluid, wasted time for wiper tripping etc.

One of the major challenges still is how to achieve efficient cuttings transport in such wellbores because drillstring rotation during drilling is not possible. This limits mechanical agitation of cutting beds, so flow rates need to be increased to compensate for this. There are many studies which agreed that the major effective drilling parameter on cuttings trans-

* Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Petroleum Engineering Department, Pierottieva 6, 10000 Zagreb, Croatia
port in high-angle wells is the annular velocity. When the flow regime in annulus is turbu-
lent, a significant reduction in cuttings bed development is observed. Better cuttings trans-
port ability has been reported for low-viscosity fluids, because turbulent flow for such
fluids can be much more easily obtained. But there are many other factors that have impact
on cuttings transport in case of coiled tubing drilling such as fluid and cuttings properties,
rate of penetration, well inclination, tubing eccentricity, etc.

So, when designing a fluid’s rheology and hydraulics for coiled tubing drilling opera-
tions the following points must be considered:
– pressure drops through the coiled tubing and up the annulus limit maximum flow rate,
– downhole motor and drilling assemblies have a flow rate range (maximum and minim-
um) that often limits the drilling fluid flow rate,
– some directional assemblies have limitations on solids that can be pumped through
them (e.g. LCM such as calcium carbonate).

2. DRILLING FLUID SELECTION

The drilling fluid selection process is principally based on the lithology and pore pres-
sures anticipated over wellbore section to be drilled. Drilling fluid density is generally
specified for each wellbore section and represents a compromise between the anticipated
pore pressure and the fracture gradient of the formation being drilled. Fluid selection must
also take account of high friction losses encountered in the CT string and the difficulties of
cutting transport. Other critical design criteria for CTD fluid include minimizing formation
damage, fluid loss, cooling and lubricating bit, motor and CT, shale stability etc.

The most common CTD fluid composition includes:
– brine based liquid for inhibition,
– bio-polymer,
– interfacial tension reducer and lubricant,
– a biocide,
– additive for pH control.

It is obvious that fluid is “solids free” and if needed adding of sodium or potassium
chloride can increase fluid density. There are different opinions about fluid viscosity. One
school of thought supports the use of visco-elastic fluids that possess very high values of
LSRV (Low Shear Rate Viscosity). The other points out that thin fluids (low-viscosity flu-
ids) in turbulent flow provide superior hole cleaning [1–6]. The problem is how to achieve
adequate flow rate in annulus with wider clearance.

3. LABORATORY WORK

We prepared and tested two different polymeric “solids free” fluids (Tab. 1). The only
difference in their composition was in the type of biopolymer. In one fluid, clarified XC
polymer was used, while in the other, a new biopolymer named diutan was used.
Table 1
Composition of tested fluids

<table>
<thead>
<tr>
<th>Composition</th>
<th>Additive</th>
<th>Quantity, g/dm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity control</td>
<td>Clarified XC polymer or Diutan</td>
<td>3</td>
</tr>
<tr>
<td>Filtration control</td>
<td>Starch</td>
<td>6</td>
</tr>
<tr>
<td>Inhibition and density</td>
<td>KCl</td>
<td>35</td>
</tr>
<tr>
<td>pH value</td>
<td>KOH</td>
<td>As needed for pH 8.5–9</td>
</tr>
</tbody>
</table>

Fluids for laboratory testing were prepared on a Hamilton Beach mixer. Potassium chloride is dissolved in tap water. Then the polymer was initially dispersed in salt water at 3000 min⁻¹ for about 1 min. After that the mixing speed was increased to 11 000 min⁻¹. Both fluids were mixed for 30 min. Specific gravity of prepared fluids was 1025 kg/m³. Rheological measurements at ambient 50°C and 75°C temperatures were performed using Model 900 viscometer. This is a digital, fully automated system with speed range from 0.006 to 1000 min⁻¹ and Couette coaxial cylinder geometry (R1B1) for measuring fluid viscosity. The instrument can perform standard API tests.

The rheological behaviour of tested fluids at different temperatures (ambient, 50°C and 75°C) is shown in Figure 1. It is obvious that for the same polymer concentration, diutan has higher viscosities in low range of shear rate than XC polymer fluid. There is no difference in viscosity for higher shear rates.

![Figure 1. Comparison of viscosity for tested fluids](image)

LSRV viscosity was also determined by the Model 900 viscometer at the rotational speed of 0.037 min⁻¹. Results are shown in Figure 2. It can be seen that fluid with diutan has higher LSRV values at all testing temperatures. Also, LSRV values of the fluid with diutan are stable at all temperatures. LSRV values of XC polymer fluid are decreased with temperature increasing.

287
Fluid loss testing of both fluids was performed by standard API filter press. Results are shown in Figure 3. Both fluids have high spurt loss and constant filtration with time.

4. HYDRAULICS SIMULATION

Typical horizontal wellbore geometry in case of coiled tubing drilling is shown in Figure 4. There are two characteristic areas [2]:

1) CT and BHA in openhole annulus – near the bit and usually at a high inclination,
2) CT in casing annulus – farther up the well and at a lower inclination,
We used MTI software application to calculate critical flow rates and pressure profiles for tested fluids. Results of modelling confirm that chosen coiled tubings can withstand imposed pressures. Rheological fluid parameters used in calculations are presented in Table 3.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Power – law’s model rheological parameters values of the tested fluids (at 75°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DIUTAN</td>
</tr>
<tr>
<td>Flow behaviour index (n), –</td>
<td>0.221</td>
</tr>
<tr>
<td>Consistency index (K), Pa·s^n</td>
<td>1.98</td>
</tr>
</tbody>
</table>

Rheological parameters for both fluids were calculated based on six characteristic data pairs shear rate/shear stress. Two commonly used coiled tubing drillstring configurations were anticipated for critical velocity/flow rate modelling (Tab. 4). The results of modelling are shown in Table 5.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Drillstring configuration (from the bottom)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drillstring 1</td>
</tr>
<tr>
<td></td>
<td>Outer diameter, mm (in)</td>
</tr>
<tr>
<td>Bit</td>
<td>114.3 (4.5)</td>
</tr>
<tr>
<td>BHA</td>
<td>88.9 (3.5)</td>
</tr>
<tr>
<td>Coiled tubing</td>
<td>73.025 (2.875)</td>
</tr>
</tbody>
</table>

Inner casing diameter for both configurations is 127.3 mm
Table 5

Results of critical velocity/flow rate modelling

<table>
<thead>
<tr>
<th>Wellbore area</th>
<th>XC Polymer</th>
<th>DIUTAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drillstring 1</td>
<td>Drillstring 2</td>
</tr>
<tr>
<td></td>
<td>v_c, m/s</td>
<td>Q_c, l/min</td>
</tr>
<tr>
<td>Openhole – BHA</td>
<td>1.916</td>
<td>454.3</td>
</tr>
<tr>
<td>Openhole – CT</td>
<td>1.7</td>
<td>619.4</td>
</tr>
<tr>
<td>Casing – CT</td>
<td>1.6</td>
<td>826.4</td>
</tr>
</tbody>
</table>

In the case of drillstring configuration 1, turbulent flow is achievable only in the openhole – bottom hole assembly part of annulus. The flow rates needed for turbulent flow in other parts of annulus are too high because of downhole motor capacity limitations (anticipated positive displacement motors (PDM) have flow rate limitations in the range of 341 to 606 l/min). In drillstring configuration 2, both fluids can be pumped in turbulent flow in openhole part of the annulus (PDM limitations range 303 to 473 l/min). Turbulence cannot be achieved around coiled tubing in casing neither for drillstring 1 nor for drillstring 2 configuration. Because of higher LSRV value which means better cleaning possibilities in larger annuli and lower observed pressure losses [6], fluid with diutan is a better choice for cleaning both “wells”.

5. CONCLUSIONS

Hole cleaning is more efficient if a low-viscosity fluid is pumped in turbulent flow but such conditions are usually limited by the pressure at the surface and the flow rate limitation of the downhole motor/assembly.

Diutan used in tested “solids free” polymer fluids is more efficient viscosifier than xanthan (higher LSRV values at all testing temperatures) and is a better choice for using in coiled tubing drilling operations.

Hydraulics modelling should be done during the wellbore design phase especially in complex operations such as coiled tubing drilling. It can help in the selection of appropriate drilling fluid.

REFERENCES

290

