Jincai Wang

THE EXACT VALUES OF NONSQUARE CONSTANTS
FOR A CLASS OF ORLICZ SPACES

Abstract. We extend the M_Δ-condition from [10] and introduce the Φ_Δ-condition at zero. Next we discuss nonsquare constant in Orlicz spaces generated by an N-function $\Phi(u)$ which satisfy Φ_Δ-condition. We obtain exact value of nonsquare constant in this class of Orlicz spaces equipped with the Luxemburg norm.

Keywords: nonsquare constant Orlicz space, Φ_Δ-condition.

Mathematics Subject Classification: 46B20, 46E30.

1. INTRODUCTION

Let $(X, \|\|)$ be a Banach space, $S(X) = \{x: \|x\| = 1, x \in X\}$ denote the unit sphere of X. Following James [1], X is called uniformly nonsquare if there is a constant $0 < c < 1$ such that for $x, y \in S(X)$, we have

$$\|x + y\| \leq 2 - 2c, \quad \text{or} \quad \|x - y\| \leq 2 - 2c.$$

To discuss the property of uniform nonsquareness, Gao and Lau [2] introduce the following concept.

Definition 1. For a Banach space X, the parameter $J(X)$ is termed a nonsquare constant (in the sense of James) where

$$J(X) = \sup\{\min(\|x - y\|, \|x + y\|): x, y \in S(X)\} \quad (1)$$

It is easy to deduce that (cf. Gao and Lau [2]) X is uniformly nonsquare iff $J(X) < 2$.
Let:
\[
\Phi(u) = \int_0^{|u|} \phi(t) dt, \quad \Psi(v) = \int_0^{|v|} \psi(s) ds
\]
be a pair of complementary \(N\)-functions, i.e., \(\phi(t)\) is right continuous, \(\phi(0) = 0\), and \(\phi(t) \nearrow \infty\) as \(t \nearrow \infty\) and the same properties has \(\psi\). Let \((\Omega, \Sigma, \mu)\) be a measure space. The Orlicz space is defined by
\[
L^\Phi(\Omega) = \{ x: \Omega \to \mathbb{R}, \text{measurable}, \rho_\Phi(\lambda x) d\mu < \infty \text{ for some } \lambda > 0 \}.
\]

Luxemburg norm (gauge norm) and Orlicz norm in \(L^\Phi(G)\) are defined, respectively, by
\[
\|x\|_{\Phi} = \inf \{ c > 0: \rho_\Phi \left(\frac{x}{c} \right) \leq 1 \}
\]
and
\[
\|x\|_{\Phi} = \inf_{k > 0} \frac{1}{k} \left[1 + \rho_\Phi(kx) \right].
\]

For simplicity, we use the notations \(L^\Phi\) and \(L^{(\Phi)}\) for the Orlicz spaces equipped with the Orlicz norm \((L^\Phi(\Omega), \|\cdot\|_{\Phi})\) and the Orlicz spaces equipped with the Luxemburg norm \((L^\Phi(\Omega), \|\cdot\|_{\Phi})\) respectively, i.e. we denote \(L^{(\Phi)} = (L^\Phi, \|\cdot\|_{\Phi})\) and \(L^\Phi = (L^\Phi, \|\cdot\|_{\Phi})\).

An \(N\)-function \(\Phi(u)\) is said to satisfy the \(\Delta_2\)-condition for small \(u\) (for all \(u \geq 0\) or for large \(u\)), in symbol \(\Phi \in \Delta_2(0)\) (\(\Phi \in \Delta_2\) or \(\Phi \in \Delta_2(\infty)\)), if there exists \(u_0 > 0\) and \(c > 0\) such that \(\Phi(2u) \leq c\Phi(u)\) for \(0 \leq u \leq u_0\) (for all \(u \geq 0\) or for \(u \geq u_0\)). An \(N\)-function \(\Phi(u)\) is said to satisfy the \(\nabla_2\)-condition for small \(u\) (for all \(u \geq 0\) or for large \(u\)), in symbol \(\Phi \in \nabla_2(0)\) (\(\Phi \in \nabla_2\) or \(\Phi \in \nabla_2(\infty)\)), if its complementary \(N\)-function \(\Psi \in \Delta_2(0)\) (\(\Psi \in \Delta_2\) or \(\Psi \in \Delta_2(\infty)\)). The basic facts on Orlicz spaces can be found in Krasnoselskii and Rutickii [11], Lindenstrauss and Tzafriri [12], Rao and Ren [4] and Chen [3].

For nonsquare constant for the Orlicz function and sequence spaces equipped with Luxemburg norm with \(\Phi\) satisfying the \(\Delta_2\)-condition, Ji and Wang [5] and Ji and Zhan [6] gave some expressions. Letter on, Y. Q. Yan [7] gave the corresponding results for the Orlicz spaces equipped with Orlicz norm with \(\Phi\) satisfying the \(\Delta_2\)-condition. Using this expression, it is not easy to compute nonsquare constant for specific Orlicz spaces. For computation, Rao and Ren [9] and Y. Q. Yan [7, 8] gave estimates of nonsquare constants by Semenov and Simonenko indices of \(\Phi\), and obtain its exact value in some class of Orlicz spaces.

In view of some of their results for latter use, we review the Semenov indices of \(\Phi\) here:
\[
\alpha_\Phi = \lim_{u \to \infty} \inf \frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)}, \quad \beta_\Phi = \lim_{u \to \infty} \sup \frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)};
\]
\[
\alpha_0^\Phi = \lim_{u \to 0} \inf \frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)}, \quad \beta_0^\Phi = \lim_{u \to 0} \sup \frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)};
\]
\[
\alpha_\Phi = \inf_{u > 0} \frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)}, \quad \beta_\Phi = \sup_{u > 0} \frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)}.
\]

Using the Semenov indices, Ren gave the following estimate of nonsquare constant.

Lemma 1 (Rao and Ren [9, p. 54]). Let \(\Phi \) and \(\Psi \) be a pair of complementary \(N \)-function. Then:

\[
\max \left(\frac{1}{\alpha_\Phi}, \frac{2}{\beta_\Phi} \right) \leq J \left(L(\Phi) [0,1] \right),
\]
\[
\max \left(\frac{1}{\alpha_\Phi}, \frac{2}{\beta_\Phi} \right) \leq J(\Phi) [0,\infty)),
\]
\[
\max \left(\frac{1}{\alpha_\Phi}, \frac{2}{\beta_\Phi} \right) \leq J(t(\Phi)).
\]

Lemma 2 (Rao and Ren [9, p. 66]). Let \(\Phi \) be an \(N \)-function, and \(\Phi_s \) be the inverse of:

\[
\Phi_s^{-1}(u) = [\Phi^{-1}(u)]^{1-s} [\Phi_0^{-1}(u)]^s, \quad u \geq 0, \quad 0 < s \leq 1
\]

with \(\Phi_0(u) = u^2 \). If \((\Omega, \Sigma, \mu)\) is a \(\sigma \)-finite space, then:

(i) for \(L(\Phi_s) (\Omega) \) on \((\Omega, \Sigma, \mu)\) with Luxemburg norm,

\[
J(\Phi_s) (\Omega) \leq 2^{1-s},
\]

(ii) the same result holds also for \(L^\Phi (\Omega) \) with Orlicz norm.

Definition 2. An \(N \)-function \(\Phi \) is said to satisfy \(\Phi_\Delta(0) \), written as \(\Phi \in \Phi_\Delta(0) \), if \(p = \lim_{u \to 0} \frac{\ln \Phi(u)}{\ln u} < \infty \). An \(N \)-function \(\Phi \) is said to satisfy \(\Phi_\Delta(\infty) \), written as \(\Phi \in \Phi_\Delta(\infty) \), if \(p = \lim_{u \to \infty} \frac{\ln \Phi(u)}{\ln u} < \infty \).

By the definition of \(N \)-function, we easily see that \(p \geq 1 \). Using a similar method as [10], we have

Lemma 3.

(i) If \(\Phi \in \Phi_\Delta(0) \) and \(\lim_{u \to 0} \frac{\ln \Phi(u)}{\ln u} = p > 1 \), then

\[
\lim_{u \to 0} \frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)} = 2^{-\frac{1}{p}},
\]

where \(\Phi^{-1}(u) \) is an inverse function of \(\Phi \).

(ii) If \(\Phi \in \Phi_\Delta(\infty) \) and \(\lim_{u \to \infty} \frac{\ln \Phi(u)}{\ln u} = p > 1 \), then

\[
\lim_{u \to \infty} \frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)} = 2^{-\frac{1}{p}},
\]
Proof. (ii) was proved in [10]. The authors use the definition of limit on \(\lim_{u \to 0} \frac{\ln \Phi(u)}{\ln u} = p \), and then give the estimate of \(\frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)} \) to get the result. (i) is similar to (ii). But we adjust the proof in [10] and prove (ii) here.

Noting \(\lim_{u \to 0} \frac{\ln \Phi(u)}{\ln u} = p \) iff \(\lim_{u \to 0} \frac{\ln \Phi^{-1}(u) - \frac{1}{p} \ln u}{\ln u} = 1 \). Let \(\beta(u) = \ln \Phi^{-1}(u) - \frac{1}{p} \ln u \). Then

\[
\lim_{u \to 0} \frac{\beta(u)}{\ln u} = 0 \quad \text{and} \quad \Phi^{-1}(u) = u^\frac{1}{p} e^{\beta(u)}.
\]

So

\[
\frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)} = \frac{u^\frac{1}{p} e^{\beta(u)}}{(2u)^\frac{1}{p} e^{\beta(2u)}} = 2^{-\frac{1}{p}} \left(\frac{\beta(u)}{\beta(2u)} \right)^{\ln u} \left(\frac{1}{\beta(2u)} \ln 2u \right) \ln u.
\]

Noting that \(\ln u - \ln 2u = \ln \frac{1}{2} \) and \(\lim_{u \to 0} e^{\beta(u)} = \lim_{u \to 0} e^{\beta(2u)} = 1 \), we have

\[
\lim_{u \to 0} \frac{\Phi^{-1}(u)}{\Phi^{-1}(2u)} = 2^{-\frac{1}{p}}.
\]

The next lemma, which has been proved in [10], is useful for our goal.

Lemma 4. Let \(\Phi \in \Phi_\triangle(\infty) \) and \(\Psi \) be its complementary \(N \)-function, \(\lim_{u \to \infty} \frac{\ln \Phi(u)}{\ln u} = p > 1 \) and \(\Phi_0(u) = u^{p_0} \) where \(p_0 > 1 \). Then:

(i) \(\lim_{v \to \infty} \frac{\ln \Psi(v)}{\ln v} = q > 1 \), where \(\frac{1}{p} + \frac{1}{q} = 1 \),

(ii) \(\lim_{u \to \infty} \frac{\ln \Phi^{-1}(u)}{\ln u} = \frac{1}{p} \),

(iii) \(\lim_{u \to \infty} \frac{\ln \Phi_0(\Phi(u))}{\ln u} = p + p_0 \),

(iv) \(\lim_{u \to \infty} \frac{\Phi_0(\Phi(u))}{\ln u} = pp_0 \).

Lemma 4 is also true for \(\Phi \in \Phi_\triangle(0) \).

2. NONSQUARE CONSTANTS FOR ORLICZ SPACES WITH LUXEMBURG NORM

Now we give our main results.

Theorem 1. Let \(\Phi \in \Phi_\triangle(\infty) \) and \(\lim_{u \to \infty} \frac{\ln \Phi(u)}{\ln u} = p > 1 \). Then

\[
J \left(L^p([0, 1]) \right) = \max \left(2^{\frac{1}{p}}, 2^{1-\frac{1}{p}} \right).
\]
The Exact Values of Nonsquare Constants for a Class of Orlicz Spaces

Let \(\Phi \)

Theorem 2. First, by Lemma 1, we have

\[
J \left(L^{(\Phi)}[0,1] \right) \geq \max \left(\frac{1}{\alpha_{\Phi}}, 2\beta_{\Phi} \right).
\]

By Lemma 3, we have \(\alpha_{\Phi} = \beta_{\Phi} = 2^{-\frac{1}{p}} \). Hence

\[
J \left(L^{(\Phi)}[0,1] \right) \geq \max \left(2^{\frac{1}{p}}, 2^{1-\frac{1}{p}} \right).
\]

Next, we will show the inequality \(\leq \) in (2). Now let \(1 < p \leq 2 \). We choose \(l \) such that \(1 < l < p \leq 2 \) and take \(s = \frac{2(p-l)}{(p-2)} \). Obviously, \(0 < s < 1 \). Let \(M \) be the inverse function of \(M^{-1}(u) = u^{\frac{p}{2(p-2)}} [\Phi^{-1}(u)]^{\frac{1}{p-l}} \) and \(\Phi_0(u) = u^2 \). Then \(\Phi^{-1}(u) = [M^{-1}(u)]^{1-s}[\Phi_0^{-1}(u)]^s \), i.e. \(\Phi^{-1} = [M^{-1}]^{1-s}[\Phi_0^{-1}]^s = \Phi^{-1} \). Therefore, by Lemma 2, we have

\[
J \left(L^{(\Phi)}[0,1] \right) = J(L^{(\Phi_0)}[0,1]) < 2^{1-\frac{s}{p}} = 2^{1-\frac{p-l}{p-2}}.
\]

Since \(\lim_{l \to 1} \frac{p-l}{p(2-l)} = \frac{p-1}{p} \), we get

\[
J \left(L^{(\Phi)}[0,1] \right) \leq 2^{\frac{1}{p}} = \max \left(2^{\frac{1}{p}}, 2^{1-\frac{1}{p}} \right).
\]

Let \(2 < p < \infty \), we choose \(l \) such that \(2 < p < l < \infty \) and take \(s = \frac{2(l-p)}{p(l-2)} \). Obviously, \(0 < s < 1 \). Let \(M \) be the inverse function of \(M^{-1}(u) = u^{\frac{p}{2(p-2)}} [\Phi^{-1}(u)]^{\frac{1}{p-l}} \) and \(\Phi_0(u) = u^2 \). Then \(\Phi^{-1}(u) = [M^{-1}(u)]^{1-s}[\Phi_0^{-1}(u)]^s \), i.e. \(\Phi^{-1} = [M^{-1}]^{1-s}[\Phi_0^{-1}]^s = \Phi^{-1} \). Therefore,

\[
J \left(L^{(\Phi)}[0,1] \right) = J(L^{(\Phi_0)}[0,1]) < 2^{1-\frac{s}{p}} = 2^{1-\frac{l-p}{p-2}}.
\]

Since \(\lim_{l \to \infty} \frac{l-p}{p(l-2)} = \frac{1}{p} \), we get

\[
J \left(L^{(\Phi)}[0,1] \right) \leq 2^{1-\frac{1}{p}} = \max \left(2^{\frac{1}{p}}, 2^{1-\frac{1}{p}} \right). \quad \square
\]

For Orlicz function spaces \(L^{(\Phi)}[0,\infty) \) and Orlicz sequence spaces \(l^{(\Phi)} \), we have similar results.

Theorem 2. Let \(\Phi \in \Phi_{\Delta}(\infty) \) and \(\lim_{u \to \infty} \frac{\ln \Phi(u)}{\ln u} = p > 1. \) Then

\[
J \left(L^{(\Phi)}[0,\infty) \right) = \max \left(2^{\frac{1}{p}}, 2^{1-\frac{1}{p}} \right). \quad (3)
\]

Proof. By Lemma 1, we get

\[
J \left(L^{(\Phi)}[0,\infty) \right) \geq \max \left(\frac{1}{\alpha_{\Phi}}, 2\beta_{\Phi} \right).
\]
Example 3. Let \(\Phi \in \Phi_\Delta(0) \) and \(\lim_{u \to 0} \frac{\ln \Phi(u)}{\ln u} = p > 1 \). Then
\[
J(L^{(\Phi)}[0, \infty)) = \max \left(\frac{1}{p}, 2^{1 - \frac{1}{p}} \right).
\] (4)

Proof. The proof is similar to the proof of Theorem 1.

Example 2. Let \(\Phi(u) = |u|^{2p} + 2|u|^p, 1 < p < \infty \). Then \(\lim_{u \to \infty} \frac{\ln \Phi(u)}{\ln u} = 2p > 1 \) and
\[
\lim_{u \to 0} \frac{\ln \Phi(u)}{\ln u} = p > 1.
\] By Theorems 1, 2 and 3, we have \(J(L^{(\Phi)}[0, 1]) = J(L^{(\Phi)}[0, \infty)) = \max \left(\frac{1}{p}, 2^{1 - \frac{1}{p}} \right) \).

Example 4. Let \(\Phi(u) = (1 + |u|)^r \). Then
\[
J(L^{(\Phi)}[0, 1]) = J(L^{(\Phi)}[0, \infty)) = \max \left(\frac{1}{p}, 2^{1 - \frac{1}{p}} \right).
\]
So
\[J\left(L^{(\Phi)}[0, 1]\right) = J(L^{(\Phi)}[0, \infty)) = \max \left\{ 2^{1/4}, 2^{1-1/4} \right\} = 2^{3/4}, \]
\[J(t^{(\Phi)}) = \max \left\{ 2^{4/7} + 1/2, 2^{4/7} - 1/2 \right\}. \]

Remark 2. Example 4 improve the Example 8 in Chapter II of [9, p. 71], because in [9], the author didn’t give the exact value of \(J(t^{(\Phi)}) \).

REFERENCES

Jincai Wang
wwwanggj@163.com

Suzhou University, Department of Math.
Suzhou, 215006 P.R.China.

Received: March 19, 2005.