PRÓBA OGRANICZENIA STRAT NASION RZEPAKU
PODZAS ZABIEGÓW DESYKACYJNYCH

Streszczenie

Określono wpływ dwóch rodzajów preparatów Avans Premium 360 SL oraz Reglone 200 SL na straty nasion rzepaku powstałe podczas zabiegów desyka-
cyjnych oraz w czasie podesykacyjnego dojrzewania i zbioru. Zabiegi desy-
kacyjne przeprowadzono tradycyjnym agregatem naziemnym oraz wyposa-
żając go w rozdzielacze łanu, ekrany i osłony.

Słowa kluczowe: desykcja, straty nasion rzepaku, osłony, rozdzielacze łanu

Wprowadzenie

Skłonność do osypywania nasion jest cechą charakterystyczną wielu roślin upraw-
nych. Rośliną szczególnie podatną na osypywanie, ze względu m.in. na nierówno-
mierne dojrzewanie oraz pękanie łusczyn w czasie dojrzewania, zabiegów desy-
kacyjnych i zbioru, jest rzepak. Straty nasion z tego tytułu wynoszą na ogół od kilku do kilkunastu procent. W pewnym stopniu można je ograniczyć przeprowa-
dzając desykcję rzepaku za pomocą różnych preparatów chemicznych [Rudko
2000; Szot i in. 1989; Szot, Tys 1991; Markowski i in. 2003].

W badaniach związanych z wyznaczaniem strat nasion rzepaku, główną trudność
stanowi proces indentyfikacji opadłych na glebę nasion, ze względu na ciemną ich
barwę i stosunkowo małą średnicę. Do oszacowania strat nasion można wykorzy-
stać m.in. metody pośredniej, polegającą na zliczaniu roślin wyrosłych z osypanych
nasion i metodę bezpośredni, polegającą na zliczaniu nesion spadających do po-
jemników umieszczonych między rzędami roślin lub na powierzchni gleby [Rud-
ko 2000; Choszcz i in. 2004]. Do oceny strat nasion w warunkach polowych można
użyć również specjalnych ramek o określonej powierzchni. Metoda ta pozwala także na oszacowanie strat powstających w zespołach: żniwnym, młócącym oraz czyszczącym kambiju [Szot, Tys 1991; Szot i in. 1991].

Rozwiązaniem, które umożliwia nie tylko określenie wielkości strat nasion, ale również ich rozkładu poprzecznego jest umieszczenie między rzędami roślin lepkich, elastycznych taśm zatrzymujących na swojej powierzchni osypujące się nasiona [Lipiński i in. 2003]. Metodę tę wykorzystano w niniejszej pracy, w której przedstawiono wyniki dwuletniego okresu badań.

Cel pracy

Celem pracy jest określenie wpływu preparatów Avans Premium 360 SL i Reglone 200 SL – różnych pod względem intensywności ich oddziaływania na rośliny i z tym związane różne terminy ich stosowania – na:

1. straty nasion podczas przeprowadzania zabiegów desykacyjnych tradycyjnym agregatem opryskującym oraz wpływu na osypianie w czasie pomiędzy desykacją a zbiorem,
2. straty nasion podczas przeprowadzania zabiegów desykacyjnych naziemnym agregatem opryskującym wyposażonym w ekran, rozdzielacze i fartuchy osto nowe oraz w okresie poddesykacyjnego dosychania do czasu zbioru rzepaku,
3. dorodność nasion rzepaku w plonie zebranym i związane z nią korzyści lub straty plonu.

Warunki i metodyka badań

Doświadczenia prowadzono na polach Rolniczego Zakładu Produkcyjno-Doświadczalnego „Bałcyny” Spółka z o.o w 2002 i 2003 r. Terminy zabiegów podanych w tabeli 1 zostały określone przez kierownictwo RZP-D na podstawie pomiaru wilgotności nasion, barwy łanu i otwarcia łusczyn w próbach zginania U lub V [Rzepak 1996]. Przy zabiegach stosowano agregat składający się z ciągnika Ursus 1201 i opryskiwacza przyczepianego typu S-320 ND18 C320 o szerokości roboczej 18 m. Ciagnik wyposażony był w wąskie opony. Szerokość ogumienia kół przednich i tylnych ciągnika wynosiła odpowiednio 19 i 31,5 cm. Do badań w wariancje agregatu opryskującego wyposażonego w ekran, fartuchy osłaniające podwozie i rozdzielacze łanu zastosowano oprzyrządowanie (rys. 1) wykonane przez firmę „Syngenta Crop Protection” Spółka z o.o. w Warszawie [Markowski i in. 2003].
Table 1. Dates and conditions carried out the desiccation operations and combine harvesting

<table>
<thead>
<tr>
<th>Rodzaj zabiegu</th>
<th>Termin zabiegu</th>
<th>Temperatura i wilgotność względna powietrza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desykacja preparatem Avans</td>
<td>28.06.2002, godz. 1200−1300</td>
<td>19,5°C, 58%</td>
</tr>
<tr>
<td>Desykacja preparatem Reglone</td>
<td>03.07.2002, godz. 1100−1200</td>
<td>22,6°C, 60%</td>
</tr>
<tr>
<td>Zbiór</td>
<td>09.07.2002, godz. 1100−1200</td>
<td>22,7°C, 75%</td>
</tr>
<tr>
<td>Desykacja preparatem Avans</td>
<td>09.07.2003, godz. 1100−1200</td>
<td>23°C, 70%</td>
</tr>
<tr>
<td>Desykacja preparatem Reglone</td>
<td>16.07.2003, godz. 1030−1120</td>
<td>27°C, 67%</td>
</tr>
<tr>
<td>Zbiór</td>
<td>23.07.2003, godz. 1300−1420</td>
<td>12°C, 65%</td>
</tr>
</tbody>
</table>

Rys. 1. Ciągnik agregatu opryskującego z ekranem, fartuchem i rozdzielaczami lanu

Fig. 1. View of tractor of spraying aggregate with screen, apron and distributors of field

Na plantacjach wydziacono zagony o długości ok. 60 m i szerokości odpowiadającej szerokości roboczej agregatu opryskującego. W odległości ok. 20 i 40 m od skraju zagonu, na całej jego szerokości, wykonano nożyrami ręcznymi do cięcia...
żywopłotów dwa przekosy o szerokości ok. 40 cm, które wykorzystywano jako ścieżki komunikacyjne, niezbędne przy realizacji eksperymentu polowego. Do rejestracji osypujących się nasion zastosowano lepkie taśmy [Lipiński i in. 2003], które wykonano z białej wykładziny podłogowej (z gumoleum) o grubości ok. 2 mm. Powierzchnię pomiarową każdej z taśm podzielono na 10 elementarnych pół pomiarowych. Właściwą lepkość taśm uzyskano pokrywając ich powierzchnię pomiarową warstwą smaru stałego (LT-4) o grubości ok. 0,5 mm. W pasie każdego potencjalnego przejazdu agregatu opryskującego ułożono w wybranych miejscach co najmniej 20 taśm rejestracyjnych rozłożonych na szerokości ok. 4 m. Po przejeździe agregatu opryskującego zliczono nasiona znajdujące się na poszczególnych polach elementarnych taśm rejestracyjnych. Powierzchnia każdego pola elementarnego wynosiła 80 cm². Masę nasion na powierzchni każdego pola elementarnego obliczono mnożąc liczbę nasion przez średnią masę jednego nasiona ustaloną na postawie pomiaru masy 1000 nasion zebranych w trakcie zbioru kombajnem. Straty nasion odnotowane na polach elementarnych przeliczono na 1 ha.

Oceną strat nasion objęto tylko pasy roślin podlegających bezpośrednim mechanicznemu oddziaływaniu elementów agregatu opryskującego. Oprócz pasa ze ścieżkami technologicznymi zaliczono do nich również pasy sąsiednie z taśmami, na których liczba nasion stanowiła co najmniej 50% liczby nasion z sąsiadującej z nią taśmy od strony agregatu [Choszcz i in. 2004].

W ogólnej ocenie strat nasion rzepaku uwzględniono również straty powstałe podczas jego zbioru, który wykonywano kombajnem firmy Claas typu Lexion 460 o szerokości roboczej 6 m. Był on wyposażony w zespół zniżony do zbioru rzepaku. Przy rejestracji strat nasion podczas zbioru rzepaku taśmy pomiarowe rozkładano w ten sam sposób, jak przy eksperymencie z agregatem desykującym, obejmując pas łanu o szerokości ok. 8 m.

Wyniki doświadczeń poddano analizie statystycznej przy użyciu programu statystycznego STATISTICA PL [1997] wykorzystując analizę wariancji. Weryfikowano następujące hipotezy zerowe H_0: średnie straty nasion rzepaku osypanych podczas zabiegu desykacji, w okresie podesykacyjnym dojrzewania i w trakcie zbioru oraz masy 1000 nasion w płonie zebranym nie zależą od rodzaju użytego preparatu, jak i wyposażenia agregatu.

Wyniki badań i ich analiza

Straty nasion powstałe podczas zabiegu desykacji rzepaku dwoma rodzajami preparatów Avans i Reglone łącznie ze stratami samoosypywania nasion w okresie podesykacyjnym dojrzewania z uwzględnieniem dwóch wariantów agregatu
(tradycyjnego oraz wyposażonego w osłony i rozdzielacze łanów) przedstawiono w tabeli 2. Analiza statystyczna tych strat wykazała, że istotnie wyższe są one dla obszarów desykonowych agregatami tradycyjnymi (tzn. bez oslon i rozdzielaczy łanu), zarówno przy stosowaniu preparatu Avans, jak i Reglone. W wariancie agregatu bez wyposażenia dodatkowego nie zaobserwowano statystycznie istotnego wpływu stosowanego preparatu na straty nasion.

_Tabela 2. Analiza porównawcza desykacyjnych strat nasion rzepaku
_Table 2. The comparative analysis of seed losses during the rape desiccation

<table>
<thead>
<tr>
<th>Rodzaj środka</th>
<th>Rodzaj agregatu</th>
<th>Straty nasion w wyodrębnionych strefach</th>
<th>Całkowite straty nasion na 18 m szerokości roboczej agregatu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A<sup>1</sup> [kg/ha]</td>
<td>B<sup>1</sup> [kg/ha]</td>
</tr>
<tr>
<td>1. Avans</td>
<td>o – z osłonami</td>
<td>54,17</td>
<td>3,14</td>
</tr>
<tr>
<td></td>
<td>b – bez osłon</td>
<td>127,99</td>
<td>3,14</td>
</tr>
<tr>
<td>2. Reglone</td>
<td>o – z osłonami</td>
<td>103,09</td>
<td>3,21</td>
</tr>
<tr>
<td></td>
<td>b – bez osłon</td>
<td>131,21</td>
<td>3,21</td>
</tr>
</tbody>
</table>

Wyniki analizy wariancji dla całkowitych strat nasion rzepaku

Przyjęty poziom istotności

Prawidłowości przekroczenia statystyki F

Ponieważ p(F)<α – hipotezę H₀ odrzucamy na korzyść alternatywnej H₁

Wyniki istotności różnic (testu Duncana)

1^b, 2^b, 2^b > 10^{**} 1^b, 2^b > 20^{**}

* – różnice statystycznie istotne przy poziomie istotności α = 0,05

** – różnice statystycznie istotne przy poziomie istotności α = 0,01

1⁾ – w strefie bezpośredniego oddziaływania elementów agregatu (pas o szerokości 2,43±2,64 m)

2⁾ – poza strefą bezpośredniego oddziaływania elementów agregatu

Wyposażenie agregatu w osłony i rozdzielacze łanów znacznie obniża poziom strat, przy stosowaniu preparatu Reglone o ok. 15% i aż o ponad 50% dla Avansu, w stosunku do strat odnotowanych przy agregacie tradycyjnym. Na ogólny poziom strat decydujący wpływ ma mechaniczne oddziaływanie na rośliny elementów agregatu opryskiwającego. W strefie tego oddziaływania, w pasie o szerokości ok. 2,5 m, straty nasion są ok. 20±40-krotnie wyższe niż w częściach łanu podlegających tylko oddziaływaniu strumienia cieczy roboczej z opryskiwacza. Przykładowy rozkład strat przedstawiono na rysunku 2.
Rys. 2. Średnie straty nasion po zabiegu desykacji rzepaku preparatem Reglone za pomocą agregatu opryskującego wyposażonego w ekran, rozdzielacze łam i fartuchy osłonowe: 1 – spowodowane osypywaniem się nasion po zabiegu desykacji, 2 – spowodowane zabiegiem desykacji i samoosypywaniem

Fig. 2. Average seeds losses after desiccation with preparation Reglone 200 SL by using spraying aggregate equipped with screen, distributors of field and aprons: 1 – resulted from shattering of seeds after desiccation, 2 – resultied from self-shattering

Straty zanotowane podczas zbioru kombajnowego rzepaku przedstawiono w tabeli 3. Analiza statystyczna wykazała, że znacznie wyższe straty nasion wystąpiły podczas zbioru rzepaku z obszaru opryskanego wcześniej środkiem Avans. W stosunku do strat nasion na obszarze desykowanym preparatem Reglone były one o ponad 16% wyższe. Przy średnim ploni zebranym ok. 3 Mg/ha, wynosiły one 4,3% dla preparatu Avans i niecałe 3,7% dla preparatu Reglone.

Z analizy porównawczej masy 1000 nasion rzepaku poddanego desykacji preparatem Avans i Reglone (tab. 4) wynika, że przy drugim z środków jest ona istotnie wyższa – o ok. 2,5%.
Tabela 3. Ocena strat nasion podczas kombajnowego zbioru rzepaku
Table 3. The evaluation of seeds losses at rape combine harvesting

<table>
<thead>
<tr>
<th>Rodzaj środka</th>
<th>Liczba powierzchni pomiarowych</th>
<th>Straty nasion</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wartość średnia [kg/ha]</td>
<td>Odchylenie standardowe [kg/ha]</td>
<td>Współczynnik zmienności [%]</td>
<td></td>
</tr>
<tr>
<td>1. Avans</td>
<td>720</td>
<td>129,75</td>
<td>105,5516</td>
<td>81,35</td>
<td></td>
</tr>
<tr>
<td>2. Reglone</td>
<td>700</td>
<td>111,54</td>
<td>119,0132</td>
<td>106,70</td>
<td></td>
</tr>
</tbody>
</table>

Wyniki analizy wariancji

Przyjęty poziom istotności $\alpha = 0,05$

Prawdopodobieństwo przekroczenia statystyki F $p(F) = 0,0244$

Ponieważ $p(F) < \alpha$ – hipotezę H_0 odrzucamy na korzyść alternatywnej H_1

Wyniki istotności różnic (testu Duncana)

$1 > 2^*$

* – różnice statystycznie istotne przy poziomie istotności $\alpha = 0,05$

Tabela 4. Analiza porównawcza masy 1000 nasion rzepaku
Table 4. The comparative analysis of 1000 seed mass

<table>
<thead>
<tr>
<th>Rodzaj środka</th>
<th>Liczba powtórzeń</th>
<th>Masa 1000 nasion</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wartość średnia [kg/ha]</td>
<td>Odchylenie standardowe [kg/ha]</td>
<td>Współczynnik zmienności [%]</td>
<td></td>
</tr>
<tr>
<td>1. Avans</td>
<td>25</td>
<td>5,3410</td>
<td>0,3280</td>
<td>6,14</td>
<td></td>
</tr>
<tr>
<td>2. Reglone</td>
<td>25</td>
<td>5,4694</td>
<td>0,2911</td>
<td>5,32</td>
<td></td>
</tr>
</tbody>
</table>

Wyniki analizy wariancji

Przyjęty poziom istotności $\alpha = 0,05$

Prawdopodobieństwo przekroczenia statystyki F $p(F) = 0,0094$

Ponieważ $p(F) < \alpha$ – hipotezę H_0 odrzucamy na korzyść alternatywnej H_1

Wyniki istotności różnic (testu Duncana)

$2 > 1^*$

* – różnice statystycznie istotne przy poziomie istotności $\alpha = 0,05$
Bilansując straty nasion podczas desykacji, podezykacyjnego samoosypywania i zbioru rzepaku ze stratami i zyskiem plonu wynikającym z różnej dorodności nasion, można zauważyć, że przy wyżej podanym średnim plonie zysk z tytułu zastosowania preparatu Reglone za pomocą opryskiwacza z wyposażeniem dodatkowym w stosunku do preparatu Avans wynosi ponad 85 kg/ha.

Wnioski

1. Zastosowanie ekranu, rozdzielaczy łanu i fartuchów osłonowych w naziemnym agregacie opryskującym przyczynia się do znaczącego obniżenia strat nasion, powstających podczas oprysku rzepaku, a także do obniżenia strat całkowitych uwzględniających samoosypywanie do czasu zbioru przy preparacji Reglone 200 SL o ok. 15% i aż o ponad 50% dla Avansu Premium 360 SL.

2. Średnie straty nasion podczas zbioru kombajnowego były o ponad 16% niższe przy zastosowaniu preparatu Reglone w odniesieniu do preparatu Avans, co w przeliczeniu wynosi 18,21 kg/ha.

3. Masa 1000 nasion zależy od rodzaju i związanego z nim terminu zastosowania preparatu desykacyjnego. W plonie zebranym przy zastosowaniu preparatu Avans i preparatu Reglone wynosiła ona odpowiednio 5,34 i 5,47 g, a względu różnica na korzyść drugiego z preparatów stanowi ok. 2,5%.

4. Przeprowadzanie zabiegów desykacyjnych agregatem wyposażonym w rozdzielacze i osłony preparatem Reglone, w porównaniu do preparatu Avans, przy uwzględnieniu strat nasion podczas desykacji, podezykacyjnego samoosypywania i podczas zbioru, oraz różnice w masie 1000 nasion wynikające z rodzaju zastosowanego preparatu, daje plon dodatkowy o wartości ponad 85 kg/ha, przy ogólnym plonie zebranym wynoszącym 3 Mg/ha.

5. W strefie bezpośredniego oddziaływania na rośliny elementów naziemnego agregatu opryskującego wynoszącej ok. 2,5 m straty nasion są średnio 30-krotnie wyższe niż w częściach łanu podlegających tylko oddziaływaniu strumienia cieczy. Dlatego, też należy dążyć do ograniczenia strat w tych obszarach prowadząc prace badawcze w kierunku doskonalenia konstrukcji ekranu oraz elementów osłaniających podwozie agregatu i rozdzielaczy łanu.

Bibliografia

AN ATTEMPT OF RAPE SEEDS LOSSES REDUCTION DURING DESICCATION OPERATIONS

Summary

The effect of two kinds of preparations Avans Premium 360 SL and Reglone 200 SL on rape seeds losses during desiccation operations as well as at subsequent seeds ripening and harvesting was stated. Desiccation operations were conducted on typical aggregate and equipped with distributors of field, screen and shields.

Key words: desiccation, losses of rape seeds, shields, distributors of field