PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 62, No. 12 | 417--425
Tytuł artykułu

Sensorless control scheme for teleoperation with force-feedback, based on a hydraulic servo-mechanism, theory and experiment

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Telemanipulation systems with force-feedback are being developed from early 70's. These devices were successfully applied for remote manipulation of objects at very large distances. These types of manipulator systems are also applied in hostile environments. This work includes development of a new approach to a control design in bilateral teleoperation with force-feedback. The new control scheme does not require the force sensor placed between the manipulator body and objects of an environment. Presented approach estimates the value of environmental force impact on the manipulator body by an inverse mechanical model of the Slave subsystem. Prediction of the inverse model requires information about the value of current position of a manipulator joint. Presented system uses model estimated on-line, during manipulation tasks. Research was carried out on a hydraulic servo-mechanism test stand. The work ends with the report from the test stand and conclusions.
Wydawca

Rocznik
Strony
417--425
Opis fizyczny
Bibliogr. 31 poz., rys., schem., tab., wykr., wzory
Twórcy
autor
  • Faculty of Mechanical Engineering and Mechatronics, Institute of Mechanical Technology, West Pomeranian University of Technology 19 Piastów Ave., 70-310 Szczecin, mateusz.sakow@zut.edu.pl
autor
  • Faculty of Mechanical Engineering and Mechatronics, Institute of Mechanical Technology, West Pomeranian University of Technology 19 Piastów Ave., 70-310 Szczecin, arkadiusz.parus@zut.edu.pl
Bibliografia
  • [1] W. R. Ferrell, “Delayed Force Feedback,” Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 8, no. 5, pp. 449-455, October 1, 1966, 1966.
  • [2] G. Niemeyer, and J. J. E. Slotine, “Stable adaptive teleoperation,” Oceanic Engineering, IEEE Journal of, vol. 16, no. 1, pp. 152-162, 1991.
  • [3] Z. Wen-Hong, and S. E. Salcudean, “Stability guaranteed teleoperation: an adaptive motion/force control approach,” Automatic Control, IEEE Transactions on, vol. 45, no. 11, pp. 1951-1969, 2000.
  • [4] C. Hyun Chul, P. Jong Hyeon, K. Kyunghwan, and P. Jong-Oh, "Sliding-mode-based impedance controller for bilateral teleoperation under varying time-delay." pp. 1025-1030 vol.1.
  • [5] R. Moreau, M. T. Pham, M. Tavakoli, M. Q. Le, and T. Redarce, “Sliding-mode bilateral teleoperation control design for master–slave pneumatic servo systems,” Control Engineering Practice, vol. 20, no. 6, pp. 584-597, 6//, 2012.
  • [6] S. F. Atashzar, I. G. Polushin, and R. V. Patel, "Projection-based force reflection algorithms for teleoperated rehabilitation therapy." pp. 477-482.
  • [7] P. Arcara, C. Melchiorri, and S. Stramigioli, "Intrinsically passive control in bilateral teleoperation mimo systems." pp. 1180-1185.
  • [8] W. S. Kim, "Developments of new force reflecting control schemes and an application to a teleoperation training simulator." pp. 1412-1419 vol.2.
  • [9] P. Arcara, and C. Melchiorri, “Control schemes for teleoperation with time delay: A comparative study,” Robotics and Autonomous Systems, vol. 38, no. 1, pp. 49-64, 1/31/, 2002.
  • [10] Y. Yokokohji, and T. Yoshikawa, “Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment,” Robotics and Automation, IEEE Transactions on, vol. 10, no. 5, pp. 605-620, 1994.
  • [11] M. Saków, M. Pajor, and A. Parus, “Estymacja siły oddziaływania środowiska na układ zdalnie sterowany ze sprzężeniem siłowym zwrotnym o kinematyce kończyny górnej,” Modelowanie Inzynierskie, vol. 58, pp. 113-122, 2016.
  • [12] T. B. Sheridan, “Space teleoperation through time delay: review and prognosis,” Robotics and Automation, IEEE Transactions on, vol. 9, no. 5, pp. 592-606, 1993.
  • [13] P. Jong Hyeon, and C. Hyun Chul, "Sliding-mode controller for bilateral teleoperation with varying time delay." pp. 311-316.
  • [14] I. G. Polushin, A. Takhmar, and R. V. Patel, “Projection-Based Force-Reflection Algorithms With Frequency Separation for Bilateral Teleoperation,” Mechatronics, IEEE/ASME Transactions on, vol. 20, no. 1, pp. 143-154, 2015.
  • [15] S. Munir, and W. J. Book, "Internet based teleoperation using wave variables with prediction." pp. 43-50 vol.1.
  • [16] W. S. Kim, B. Hannaford, and A. K. Fejczy, “Force-reflection and shared compliant control in operating telemanipulators with time delay,” Robotics and Automation, IEEE Transactions on, vol. 8, no. 2, pp. 176-185, 1992.
  • [17] R. Anderson, and M. W. Spong, “Bilateral control of teleoperators with time delay,” Automatic Control, IEEE Transactions on, vol. 34, no. 5, pp. 494-501, 1989.
  • [18] R. Anderson, and M. W. Spong, "Asymptotic stability for force reflecting teleoperators with time delays." pp. 1618-1625 vol.3.
  • [19] D. A. Lawrence, “Stability and transparency in bilateral teleoperation,” Robotics and Automation, IEEE Transactions on, vol. 9, no. 5, pp. 624-637, 1993.
  • [20] K. Hastrudi-Zaad, and S. E. Salcudean, "On the use of local force feedback for transparent teleoperation." pp. 1863-1869 vol.3.
  • [21] M. C. Shih, and M. A. Ma, “Position control of a pneumatic cylinder using fuzzy PWM control method,” Mechatronics, vol. 8, no. 3, pp. 241-253, 4//, 1998.
  • [22] M. K. Chang, “An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators,” Control Engineering Practice, vol. 18, no. 1, pp. 13-22, 1//, 2010.
  • [23] Y. Ishikiriyama, and T. Morita, “Improvement of self-sensing piezoelectric actuator control using permittivity change detection,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 4, no. 1, pp. 143-149, 2010.
  • [24] M. Rakotondrabe, I. A. Ivan, S. Khadraoui, P. Lutz, and N. Chaillet, “Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control,” Mechatronics, IEEE/ASME Transactions on, vol. 20, no. 2, pp. 519-531, 2015.
  • [25] S. Khadraoui, M. Rakotondrabe, and P. Lutz, “Interval Modeling and Robust Control of Piezoelectric Microactuators,” Control Systems Technology, IEEE Transactions on, vol. 20, no. 2, pp. 486-494, 2012.
  • [26] M. Rakotondrabe, I. A. Ivan, S. Khadraoui, C. Clevy, P. Lutz, and N. Chaillet, "Dynamic displacement self-sensing and robust control of cantilever piezoelectric actuators dedicated for microassembly." pp. 557-562.
  • [27] M. Rakotondrabe, and I. A. Ivan, “Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric MicroGripper Dedicated to Micromanipulation Tasks,” Automation Science and Engineering, IEEE Transactions on, vol. 8, no. 4, pp. 824-834, 2011.
  • [28] T. Takigami, K. Oshima, Y. Hayakawa, and M. Ito, "Application of self-sensing actuator to control of a soft-handling gripper." pp. 902-906 vol.2.
  • [29] A. Wei Tech, P. K. Khosla, and C. N. Riviere, “Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications,” Mechatronics, IEEE/ASME Transactions on, vol. 12, no. 2, pp. 134-142, 2007.
  • [30] C. Yuguo, "Self-Sensing Compounding Control of Piezoceramic Micro-Motion Worktable Based on Integrator." pp. 5209-5213.
  • [31] O. Smith, “Closer control of loops with dead time,” Chemical Engineering Progress, vol. 53, no. 5, pp. 217-219, 1957.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
EN
The work was carried out as part of PBS3/A6/28/2015 Fri. "The use of augmented reality interactive voice systems and operator interface to control a crane", financed by NCBiR
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-a6bed6f7-765b-4d13-8c54-174f024c84a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.