Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 46, nr 1 | 65--70
Tytuł artykułu

Research highligths of sheet metal testing by hydraulic bulging

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Purpose: The aim of this paper is to outline the mechanical conditions when sheet metals are tested by hydraulic bulging as a research background for analysis of the experimental results. Design/methodology/approach: The methodology adopted for this investigation consists in application of the engineering plasticity to a general description of the sheet bulge deformation under lateral hydraulic pressure. Findings: Governing differential equations of hydraulic sheet bulging are found and the current thickness over the bulged dome of the deformed diaphragm is expressed in terms of loading and geometric parameters. Research limitations/implications: The mathematical treatment is limited here to the cases of axial symmetry which assumes that planar isottropic sheet metals are bulged into circular die apertures. Practical implications: Experimental results and other computational models can be analysed in more details comparing them with the derived general mathematical expression. Originality/value: The mechanical state of the sheet bulging is analysed in more general way without any restrictions to the loading rate and to the hydraulic pressure distribution.

Opis fizyczny
Bibliogr. 34 poz., rys.
  • Department of Materials Science and Technology, University of Rousse, 8 Studentska St., Rousse 7017, Bulgaria
  • Department of Materials Science and Technology, University of Rousse, 8 Studentska St., Rousse 7017, Bulgaria,
  • Department of Materials Science and Technology, University of Rousse, 8 Studentska St., Rousse 7017, Bulgaria
  • Department of Materials Science and Technology, University of Rousse, 8 Studentska St., Rousse 7017, Bulgaria
  • [1] A. Averkiev, Methods of sheet metal formability estimation, Mashinostroenie, Moscow, 1985 (in Russian).
  • [2] K. Pohlandt, Materials testing for the metal forming industry, Springer-Verlag, Berlin, 1989.
  • [3] ASM Handbook, vol. 14B, Metalworking: sheet forming, edited by S. L. Semiatin, ASM International, Materials Park, Ohio, 2006.
  • [4] ASM Handbook, vol. 8, Mechanical testing and evaluation, edited by H. Kuhn, ASM International, Materials Park, Ohio, 2000.
  • [5] J.A. Schey, Formability determination for production control, Journal of Materials Processing Technology 32 (1992) 207-221.
  • [6] D. Banabic, D.S. Comsa, M. Sester, M. Selig, W. Kubli, K. Mattiasson, M. Sigvant, Influence of constitutive equations on the accuracy of prediction in sheet metal forming simulation, Proceedings of the 7th International Conference “Numerical Simulation of 3D Sheet Metal Forming Processes” Numisheet’2008, Interlaken, 2008, 37-42.
  • [7] M. Merklein, V. Godel, Characterization of the flow behavior of deep drawing steel grades in dependency of the stress state and its impact on FEA, International Journal of Material Forming 2 (2009) 415-418.
  • [8] A. Nasser, A. Yadav, P. Pathak, T. Altan, Determination of the flow stress of five AHSS sheet materials (DP 600, DP 780, DP 780-CR, DP 780-HY and TRIP 780) using the uniaxial tensile and the biaxial Viscous Pressure Bulge (VPB) tests, Journal of Materials Processing Technology 210 (2010) 429-436.
  • [9] W.F. Hosford, R.M. Caddel, Metal Forming: Mechanics and Metallurgy, Cambridge University Press, New York, 2007.
  • [10] T. Kuwabara, Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations, International Journal of Plasticity 23 (2007) 385-419.
  • [11] D.W.A. Rees, Plastic flow in the elliptical bulge test, Inter-national Journal of Mechanical Sciences 37 (1995) 373-389.
  • [12] A. Diehl, D. Staud, U. Engel, Investigation of the mechanical behaviour of thin metal sheets using the hydraulic bulge test, Proceedings of the 4th International Conference “Multi-Material Micro Manufacture” 4M’2008, Cardiff, 2008, 195-198.
  • [13] G. Giuliano, Thickness and strain rate at the sheet dome apex in superplastic bulge forming tests, International Journal of Material Forming 2 (2009) 375-378.
  • [14] T.C. Hsu, N.M. Shang, Mechanics of sheet metal formed by hydraulic pressure into axisymmetrical shels, Experimental Mechanics 16 (1976) 337-342.
  • [15] W. Zhou, X. Zhou, Determination of states of stress and strain at pole of hydraulic bulge orthotropic sheet sample, Transactions of Nonferrous Metals Society of China 5 (1995) 84-87.
  • [16] M. Atkinson, Accurate determination of biaxial stress-strain relationships from hydraulic bulging tests of sheet metals, International Journal of Mechanical Sciences 39 (1997) 761769.
  • [17] D. Banabic, T. Balan, D.-S. Comsa, Closed form solution for bulging through elliptical dies, Journal of Materials Processing Technology 115 (2001) 83-86.
  • [18] A. Boulila, M. Ayadi, A. Zghal, K. Jendoubi, Validation experimentale du modele de calcul en calotte spherique des plaques circulaires minces sous l’effet d’un gonflement hydraulique, Mecanique & Industries 3 (2002) 627-638 (in French).
  • [19] V. Gagov, N. Feschiev, D.-S. Comsa, E. Minev, Strain hardening evaluation by bulge testing of sheet metals, Proceedings of the 12th Scientific International Conference „Achievements in Mechanical and Materials Engineering” AMME’2003, Gliwice - Zakopane, 2003, 331-334.
  • [20] F. Stachowicz, Biaxial stress-strain relationship of sheet metal from hydraulic bulging test, Scientific Bulletin C: Fascicle Mechanics, Tribology, Machine Manufacturing Technology 17 (2003) 469-474.
  • [21] B. Tomov, V. Gagov, E. Yankov, R. Radev, Mechanical state at testing of tubular and flat specimens by hydraulic bulging, Proceedings of the 25th Jubilee Scientific International Conference “62 years of Manufacturing Technology Faculty” MTF’2007, Sozopol, 2007, 127-132 (in Bulgarian).
  • [22] A. Mutrux, B. Hochholdinger, P. Hora, A procedure for the evaluation and validation of the hydraulic biaxial experiments, Proceedings of the 7th International Conference “Numerical Simulation of 3D Sheet Metal Forming Processes” Numisheet’2008, Interlaken, 2008, 67-71.
  • [23] I. Pernevan, The pressure calculus for the free hydroforming of the thin circular clamped plates, Scientific Bulletin of the Technical University of Timisoara, Transactions on Mechanics 53 (2008) 73-76.
  • [24] J. Slota, E. Spisak, Determination of flow stress by the hydraulic bulge test, Metalurgija 47 (2008) 13-17.
  • [25] C.G. Erhuy, M.E. Yurci, T. Altan, Determining the effective stress - effective strain curve of a high strength low alloy steel sheet from the viscous pressure bulge test, Journal of Engineering and Natural Sciences 26 (2008) 281-300 (in Turkish).
  • [26] V. Gagov, B. Tomov, R. Radev, E. Yankov, About the sheet metal testing by hydraulic bulging, International Journal of Microstructure and Materials Properties 4 (2009) 640-648.
  • [27] L. Koman, D. Ianici, S. Ianici, A method to study stresses and deformations in pieces subjected to hydraulic pressure, Machine Design, University of Novi Sad, Faculty of Technical Sciences, 2010, 259-264.
  • [28] M. M. Shamamy, N. M. Wang, Comparison of experimental and theoretical results for the hydrostatic bulging of circular sheets, Experimental Mechanics 11 (1971) 71-75.
  • [29] F.F. Long, A. Lucaioli, L. Iurman, D. Ziegler, Comparacion de las relaciones tension - deformacion efectivas de aceros obtenidas por traccion uniaxial y biaxial considerando anisotropia, Anales de las Jornadas de la Sociedad Argentina de materiales SAM (1999) 106-111 (in Spanish).
  • [30] M. Sigvant, K. Mattiasson, H. Vegter, P. Thilderkvist, A viscous pressure bulge test for the determination of a plastic hardening curve and equibiaxial material data, International Journal of Material Forming 2 (2009) 235-242.
  • [31] M. Koc, E. Billur, O.N. Cora, An experimental study on the comparative assessment of hydraulic bulge test analysis methods, Materials and Design 32 (2011) 272-281.
  • [32] A.V. Krupin, V.Y. Solovev, G.S. Popov, M.R. Krastev, Explosive working of metals, Metallurgia, Moskva, 1991 (in Russian).
  • [33] N.D. Cristescu, Dynamic plasticity, World Scientific Publishing, Singapore, 2007.
  • [34] E. Yankov, A. Ivanov, V. Gagov, 3D deformation analysis of the hydraulic bulging process, Mashinostroene i Mashinoznanie 11 (2010) 72-75.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.