Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 43, nr 3 | 207--224
Tytuł artykułu

Effect of sunlight and ultraviolet radiation on the efficacy of Fe-doped titanium dioxide (Fe-TiO2) nanoparticles for the removal of furfural from aqueous solutions

Treść / Zawartość
Warianty tytułu
Języki publikacji
Furfural, chemical compound very harmful to human health and difficult to degrade, is used or generated in many industries, including petrochemical, paper, and oil refining industries. The study evaluates the performance of Fe-TiCh nanoparticles for the removal of furfural in the presence of sunlight and UV radiation. Fe-TiO2 nanoparticles were prepared by the sol-gel method, and the characteristics of the resultant nanoparticles were determined using scanning electron microscopy. Samples with known concentrations of furfural and nanoparticles were individually exposed to sunlight and UV radiation under varying conditions, and the residual furfural concentration was measured using high- performance liquid chromatography. The results showed that for both processes the efficiency of furfural removal increased with increased reaction time, nanoparticle loading, and pH, whereas the efficiency decreased with increased furfural concentratioa The highest removal efficiencies of the Fe-TiCh/UV and Fe-TiCh/sun processes were 95 and 76%, respectively. In general, the degradation and elimination rate of furfural using Fe-TiO2/UV process was higher than Fe-TiCVsun process because TiO2 nanoparticles can only be activated upon irradiation with photons of light in the UV domain.

Opis fizyczny
Bibliogr. 27 poz., tab., rys.
  • Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
  • Health Sciences Research Center, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
  • Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
  • Health Sciences Research Center, Department of Biostatics, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
  • Faculty of Chemistry, Tehran University, Tehran, Iran
  • [1] SINGH S., SRIVASTAVA V.C., MAL I.D., Fixed-bed study for adsorptive removal of furfural by activated carbon, Colloids Surf., A., 2009, 322 (1), 50.
  • [2] ANBIA M., MOHAMMADI N., A nanoporous adsorbent for removal of furfural from aqueous solutions, Desalination, 2009, 249 (1), 150.
  • [3] ANBIA M., MOHAMMADI N., Heterogeneous photocatalytic degradation of furfural using NiS-clinoptilolite zeolite, Desalination, 2011, 273 (1), 248.
  • [4] MESGARI Z., GHARAGOZLOU M., KHOSRAVI A., GHARANJIG K., Spectrophotometric studies of visible light induced photocatalytic degradation of methyl orange using phthalocyanine-modified Fe doped TiO2 nanocrystals, Spectrochim. Acta, Part A., 2012, 92, 148.
  • [5] MURDOCH M., WATERHOUSE G.I.N., NADEEM M.A., METSON J.B., KEANE M.A., HOWE R.F., LLORCA J., IDRISS H., The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles, Nat. Chem., 2011, 3 (6), 489.
  • [6] MILLS G., HOFFMANN M.R., Photocatalytic degradation of pentachlorophenol on titanium dioxide particles: identification of intermediates and mechanism of reaction, Environ. Sci. Technol., 1993, 27 (8), 1681.
  • [7] PEARSON A., JANI H., KALANTAR-ZADEH K., BHARGAVA S.K., BANSAL V., Gold nanoparticle-decorated Keggin ions/TiO2 Photococatalyst for improved solar light photocatalysis, Langmuir, 2011, 27 (11),6661.
  • [8] GIRGINOV C., STEFCHEV P., VITANOV P., DIKOV H., Silver doped TiO2 photocatalyst for methyl orange degradation, J. Eng. Sci. Technol. Rev., 2012, 5 (4), 14.
  • [9] LI F.B., LI X.Z., HOU M.F., Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control, Appl. Catal., B., 2004, 48 (3), 185.
  • [10] PEARSON A., ZHENG H., KALANTAR-ZADEH K., BHARGAVA S.K., BANSAL V., Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-Switchable reducing agent for enhanced visible and solar light photocatalysis, Langmuir, 2012, 28 (40), 14470.
  • [11] PRIMO A., CORMA A., GARCIA H., Titania supported gold nanoparticles as photocatalyst, Phys. Chem. Chem. Phys., 2011, 13 (3), 886.
  • [12] BORGHEI S., HOSSEINI S., Comparison of furfural degradation by different photooxidation methods, Chem. Eng. J., 2008, 139 (3), 482.
  • [13] FARAMARZPOUR, M., VOSSOUGHI M., BORGHEIA M., Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor, Chem. Eng. J., 2009, 146 (1), 79.
  • [14] CHEN L., ZHU J., LIU Y.-M., CAO Y., LI H.-X., HE H.-Y., DAI W.-L., FAN K.-N., Photocatalytic activity of epoxide solâ gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying, J. Mol. Catal. A, Chem., 2006, 255 (1–2), 260.
  • [15] YU S., YUN H.J., LEE D.M., YI J., Preparation and characterization of Fe-doped TiO2 nanoparticles as a support for a high performance CO oxidation catalyst, J. Mater. Chem. A., 2012, 25 (22), 12629.
  • [16] ASL S.K., SADRNEZHAAD S.K., KEYANPOUR RAD M., UNER D., Comparative photodecolorization of red dye by anatase, rutile (TiO2 ), and wurtzite (ZnO) using response surface methodology, Turk. J. Chem., 2012, 36, 121.
  • [17] WANG, X., WU Z., WANG Y., WANG W., WANG X, BU Y., ZHAO J., Adsorption-photodegradation of humic acid in water by using ZnO coupled TiO2/bamboo charcoal under visible light irradiation,J. Hazard. Mater., 2013, 262, 16.
  • [18] SAHU A., SRIVASTAVA V.C., MALL I.D., LATAYE D.H., Adsorption of furfural from aqueous solution onto activated carbon. Kinetic, equilibrium and thermodynamic study, Sep. Sci. Technol., 2008, 43 (5), 1239.
  • [19] CHIOU C.-H., JUANG R.-S., Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles, J. Hazard. Mater., 2007, 149 (1), 1.
  • [20] JAMIL T.S., GHALY M.Y., FATHY N.A., ABD EL-HALIM T.A., ÖSTERLUND L., Enhancement of TiO2 behavior on photocatalytic oxidation of Mo dye using TiO2/AC under visible irradiation and sunlight radiation, Sep. Sci. Technol., 2012, 98, 270.
  • [21] ZHANG M., JUAN W., JIAN H., JIANJUN Y., Molybdenum and Nitrogen Co-Doped Titanium Dioxide Nanotube Arrays with Enhanced Visible Light Photocatalytic Activity, Sci. Adv. Mater., 2013, 5 (6), 535.
  • [22] KHAN M.M., ANSARI S.A., PRADHAN D., ANSARI M.O., HAN D.H., LEE J., CHO M.H., Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. Mater. Chem. A., 2014, 2 (3), 637.
  • [23] ZAZOULI M.A., EBRAHIMZADEH M.A., YAZDANI-CHARATI J., SHIRALIZADEH DEZFOLI A., ROSTAMALI E., VEISI F., Effect of sunlight and ultraviolet radiation in the titanium dioxide nanoparticle for removal of furfural from water, J. Mazandran. Univ. Med. Sci., 2013, 23 (107), 139 (in Persian).
  • [24] PONGWAN P., INCEESUNGVORN P., WETCHAKUN K., PHANICHPHANT S., WETCHAKUN N., Highly efficient visible-light-induced photocatalytic activity of Fe-doped TiO2 nanoparticles, Eng. J., 2012, 16 (3), 143.
  • [25] KIM M.-S., RYU C.S., KIM B.-W., Effect of ferric ion added on photodegradation of alachlor in the presence of TiO2 and UV radiation, Water Res., 2005, 39 (4), 252.
  • [26] PANG Y.L., ABDULLAH A.Z., Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water, J. Hazard. Mater., 2012, 235–236, 326.
  • [27] CHEN X., MAO S.S., Titanium dioxide nanomaterials. Synthesis, properties, modifications, and applications, Chem. Rev., 2007, 107 (7), 2891.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.