PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 11, No. 1 | 64--76
Tytuł artykułu

Self-sensing teleoperation system based on 1-dof pneumatic manipulator

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Paper presents a novel approach to a control design of bilateral teleoperation systems with force-feedback. The problem statement, analysis of research achievements to date, and the scope of the study are presented. The new design of a control unit for a master-slave system with force-feedback is presented on a simple and ideal 1-DOF bilateral teleoperation system. System control unit was based on an inverse model. The model was used to reduce value of force in the force-feedback communication channel, that the system might generate in freemotion. A substantial part of the paper is focused on the development of a mathematical model covering phenomena occurring in the investigated control scheme. The new approach was validated on a test-stand of a rotating non-linear pneumatic manipulator arm. Two linear pneumatic actuators were used in the drive system. The paper presents the modeling procedure of the experimental setup and the model used in the study. Three experiments are described to demonstrate the new control approach to master-slave objects with force-feedback. The paper contains conclusions regarding the control system and the experimental setup.
Słowa kluczowe
Wydawca

Rocznik
Strony
64--76
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
autor
  • Institute of Mechanical Technology, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University, Szczecin, 70-310 Piastów 19, Poland, mateusz.sakow@zut.edu.pl
  • Institute of Mechanical Technology, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University, Szczecin, 70-310 Piastów 19, Poland, karol.miadlicki@zut.edu.pl
autor
  • Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University, Szczecin, 70-310 Piastów 19. Poland, arkadiusz.parus@zut.edu.pl
Bibliografia
  • [1] B. Hannaford, “Stability and performance tradeoffs in bi-lateral telemanipulation”. In: Robotics and Automation, 1989. Proceedings, 1989 IEEE International Conference on, vol. 3, 1989, 1764–1767.
  • [2] M. Zhou, P. Ben-Tzvi, “RML Glove – An Exoskeleton Glove Mechanism With Haptics Feedback”, IEEE/ASME Transactions on Mechatronics, vol. 20, 2015, 641–652.
  • [3] T. Noritsugu, “Pulse-width modulated feedback force control of a pneumatically powered robot hand”. In: International Symposium of Fluid Control and Measurement, Tokyo, 1985, 47–52.
  • [4] I. G. Polushin, A. Takhmar, R. V. Patel, “Projection-Based Force-Reflection Algorithms With Frequency Separation for Bilateral Teleoperation” Mechatronics, IEEE/ASME Transactions on, vol.20, 143–154, 2015.
  • [5] K. Hastrudi-Zaad, S. E. Salcudean, “On the use of local force feedback for transparent teleoperation”. In: Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, vol. 3, 1999, 1863–1869.
  • [6] M. Taghizadeh, A. Ghaffari, F. Najafi, “Improving dynamic performances of PWM-driven servopneumatic systems via a novel pneumatic circuit”, ISA Trans, vol. 48, 512-8, Oct 2009.
  • [7] B. Guerriero, W. Book, “Haptic Feedback Applied to Pneumatic Walking”. In: ASME 2008 Dynamic Systems and Control Conference, 2008, 591–597.
  • [8] C. Hyun Chul, P. Jong Hyeon, K. Kyunghwan, P. Jong-Oh, “Sliding-mode-based impedance controller for bilateral teleoperation under varying time-delay”. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation,2001, vol. 1, 1025–1030.
  • [9] W. S. Kim, B. Hannaford, A. K. Fejczy, “Force-reflection and shared compliant control in operating telemanipulators with time delay”, IEEE Transactions on Robotics and Automation, , vol. 8, 1992, 176–185.
  • [10] W. S. Kim, “Developments of new force reflecting control schemes and an application to a teleoperation training simulator”. In: 1992 IEEE International Conference on Robotics and Automation, Proceedings, vol. 2, 1992, 1412–1419.
  • [11] D. Ben-Dov, S. E. Salcudean, “A force-controlled pneumatic actuator for use in teleoperation masters”. In: 1993 IEEE International Conference on Robotics and Automation, Proceedings, vol. 3, 1993, 938–943.
  • [12] T. Zhang, L. Jiang, X. Wu, W. Feng, D. Zhou, H. Liu, “Fingertip Three-Axis Tactile Sensor for Multifingered Grasping”, IEEE/ASME Transactions on Mechatronics, vol. PP, 2014, 1–11.
  • [13] Z. Najdovski, S. Nahavandi, T. Fukuda, “Design, Development, and Evaluation of a Pinch–Grasp Haptic Interface”, IEEE/ASME Transactions on Mechatronics, vol. 19, 2014,45–54.
  • [14] W. R. Ferrell, “Delayed Force Feedback”, Human Factors: The Journal of the Human Factors and Ergonomics Society, vol. 8, October 1st, 1966,449–455.
  • [15] T. Nguyen, J. Leavitt, F. Jabbari, J. E. Bobrow, “Accurate Sliding-Mode Control of Pneumatic Systems Using Low-Cost Solenoid Valves”, IEEE/ASME Transactions on Mechatronics, vol. 12, 2007, 216–219.
  • [16] C. Melchiorri, Telemanipulation: System aspects and control issues, Singapore: World Scientific, 1996.
  • [17] C. Melchiorri, “Robotic telemanipulation systems:An overview on control aspects”. In: Proceedings of the 7th IFAC Symposium on Robot Control, 2003, 707–716.
  • [18] P. Arcara, C. Melchiorri, S. Stramigioli, “Intrinsically passive control in bilateral teleoperation mimo systems”. In: Control Conference (ECC), 2001 European, 1180–1185.
  • [19] P. Arcara, C. Melchiorri, “Control schemes for teleoperation with time delay: A comparative study”, Robotics and Autonomous Systems, vol. 38, 1/31/2002, 49–64.
  • [20] M. Rakotondrabe, I. A. Ivan, S. Khadraoui, P. Lutz, N.Chaillet, “Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control”, IEEE/ASME Transactions on Mechatronics, vol. 20, 2015, 519–531.
  • [21] S. Stramigioli, Modeling and IPC control of interactive mechanical systems — A coordinate-free approach, Springer-Verlag: London, 2001.
  • [22] B. Tondu, S. Ippolito, J. Guiochet, A. Daidie, “A Sevendegrees-of-freedom Robot-arm Driven by Pneumatic Artificial Muscles for Humanoid Robots”, The International Journal of Robotics Research, vol. 24, April 1st, 2005, 257–274.
  • [23] V. Durbha, P. Y. Li, “Passive bilateral tele-operation and human power amplification with pneumatic actuators”. In: Proceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009, 2010, 1775–1782.
  • [24] M.-C. Shih, M.-A. Ma, “Position control of a pneumatic cylinder using fuzzy PWM control method”, Mechatronics, vol. 8, 4/1998, 241–253.
  • [25] Y. Ningbo, C. Hollnagel, A. Blickenstorfer, S. S. Kollias, and R. Riener, “Comparison of MRI-Compatible Mechatronic Systems With Hydrodynamic and Pneumatic Actuation”, Mechatronics, IEEE/ ASME Transactions on, vol. 13, 2008, 268–277.
  • [26] S. Hodgson, M. Q. Le, M. Tavakoli, M. T. Pham, “Improved tracking and switching performance of an electro-pneumatic positioning system”, Mechatronics, vol. 22, 2/2012, 1–12.
  • [27] M. Quyen Le, M. Tu Pham, R. Moreau, J. P. Simon, T. Redarce, “Force Tracking of Pneumatic Servo Systems Using On/Off Solenoid Valves Based ona Greedy Control Scheme”, Journal of Dynamic Systems, Measurement, and Control, vol. 133,054505–054505, 2011.
  • [28] T. Takigami, K. Oshima, Y. Hayakawa, M. Ito, “Application of self-sensing actuator to control of a soft-handling gripper”. In: Proceedings of the 1998 IEEE International Conference on Control Applications, vol. 2, 1998, 902–906.
  • [29] G. Niemeyer, J. J. E. Slotine, “Stable adaptive teleoperation”, IEEE Journal of Oceanic Engineering, vol. 16, 1991, 152–162.
  • [30] T. B. Sheridan, “Space teleoperation through time delay: review and prognosis”, IEEE Transactions on Robotics and Automation, vol. 9, 1993, 592–606.
  • [31] D. A. Lawrence, “Stability and transparency in bilateral teleoperation”, IEEE Transactions on Robotics and Automation, vol. 9, 1993, 624–637.
  • [32] Y. Yokokohji, T. Yoshikawa, “Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment”, IEEE Transactions on Robotics and Automation, vol. 10, 1994, 605–620.
  • [33] P. Jong Hyeon, C. Hyun Chul, “Sliding-mode controller for bilateral teleoperation with varying time delay”. In: 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings, 311–316.
  • [34] Z. Wen-Hong, S. E. Salcudean, “Stability guaranteed teleoperation: an adaptive motion/force control approach”. IEEE Transactions on Automatic Control, vol. 45, 2000, 1951–1969.
  • [35] C. W. Alexander, R. E. Trahan Jr, “A comparison of traditional and adaptive control strategies for systems with time delay”, ISA Transactions, vol. 40, 9/2001, 353–368.
  • [36] S. Munir, W. J. Book, “Internet based teleoperation using wave variables with prediction”. In: 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings, vol. 1, 2001, 43–50.
  • [37] S. F. Atashzar, I. G. Polushin, R. V. Patel, “Projection-based force reflection algorithms for teleoperated rehabilitation therapy”. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, 477–482.
  • [38] R. Anderson, M. W. Spong, “Bilateral control of teleoperators with time delay”, IEEE Transactions on Automatic Control, , vol. 34, 1989, 494–501.
  • [39] R. Anderson, M. W. Spong, “Asymptotic stability for force reflecting teleoperators with time delays”. In: 1989 IEEE International Conference on Robotics and Automation. Proceedings, vol. 3, 1618-1625.
  • [40] M. Saków, M. Pajor, A. Parus, “Estymacja siły oddziaływania środowiska na układ zdalnie sterowany ze sprzężeniem siłowym zwrotnym o kinematyce kończyny górnej”, Modelowanie Inżynierskie, vol. 58, 2016, 113–122. (in Polish)
  • [41] C. Yuguo, “Self-Sensing Compounding Control of Piezoceramic Micro-Motion Worktable Based on Integrator”. In: WCICA 2006. The Sixth World Congress on Intelligent Control and Automation, 5209–5213.
  • [42] A. Wei Tech, P. K. Khosla, C. N. Riviere, “Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory- Tracking Applications”, IEEE/ASME Transactions on Mechatronics, vol. 12, 2007, 134–142.
  • [43] Y. Ishikiriyama, T. Morita, “Improvement of self-sensing piezoelectric actuator control using permittivity change detection”, Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 4, 2010, 143–149.
  • [44] M. Rakotondrabe, I. A. Ivan, S. Khadraoui, C. Clevy, P. Lutz, N. Chaillet, “Dynamic displacement self-sensing and robust control of cantilever piezoelectric actuators dedicated for microassembly”. In: 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 557–562.
  • [45] M. Rakotondrabe, I. A. Ivan, “Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric MicroGripper Dedicated to Micromanipulation Tasks”, IEEE Transactions onAutomation Science and Engineering, vol. 8, 2011, 824–834.
  • [46] S. Khadraoui, M. Rakotondrabe, P. Lutz, “Interval Modeling and Robust Control of Piezoelectric Microactuators”. IEEE Transactions on Control Systems Technology, vol. 20, 2012, 486–494.
  • [47] N. Hogan, “Impedance Control: An Approach to Manipulation: Part II—Implementation”, Journal of Dynamic Systems, Measurement, and Control, vol. 107, 1985, 8–16.
  • [48] Z. Yong and E. J. Barth, “Impedance Control of a Pneumatic Actuator for Contact Tasks”. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, 987–992.
  • [49] H. Seraji, R. Colbaugh, “Adaptive force-based impedance control”. In: Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems ‘93, IROS ‘93, vol. 3, 1537–1544.
  • [50] J. Seul, T. C. Hsia, R. G. Bonitz, “Force tracking impedance control of robot manipulators under unknown environment”, IEEE Transactions on Control Systems Technology, vol. 12, 2004,474–483.
  • [51] K. Tadano and K. Kawashima, “Development of 4-DOFs forceps with force sensing using pneumatic servo system”. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, 2250–2255.
  • [52] M.-K. Chang, “An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators”, Control Engineering Practice, vol. 18, 1/2010, 13–22.
  • [53] K. D. Stuart, M. Majewski, A. B. Trelis, “Intelligent semantic-based system for corpus analysis through hybrid probabilistic neural networks," in International Symposium on Neural Networks, 2011, 83–92.
  • [54] K. D. Stuart, M. Majewski, “Intelligent Opinion Mining and Sentiment Analysis Using Artificial Neural Networks”. In: International Conference on Neural Information Processing, 2015, 103–110.
  • [55] K. Miądlicki, M. Pajor, “Real-time gesture control of a CNC machine tool with the use Microsoft Kinect sensor”, International Journal of Scientific & Engineering Research, vol. 6, 2015, 538–543.
  • [56] K. Miądlicki, M. Pajor, “Overview of user interfaces used in load lifting devices”, International Journal of Scientific & Engineering Research, vol.6, 1215–1220, September 2015 2015.
  • [57] M. Pajor, K. Miądlicki, M. Saków, “Kinect Sensor Implementation in Fanuc Robot Manipulation”, Archives of mechanical technology and automation, vol. 34, 2014, 35–44.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-95def891-5d90-4074-8295-d1b011acaf08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.