PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 68, nr 3 | 579--593
Tytuł artykułu

Long-horizon model predictive control of induction motor drive

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the application of a novel Model Predictive Control struc- ture for the drive system with an induction motor. The proposed controller has a cascade-free structure that consists of a vector of electromagnetics (torque, flux) and mechanical (speed) states of the system. The long-horizon version of the MPC is investigated in the paper. In order to reduce the computational complexity of the algorithm, an explicit version is applied. The influence of different factors (length of the control and predictive horizon, values of weights) on the performance of the drive system is investigated. The effectiveness of the proposed approach is validated by some experimental tests.
Wydawca

Rocznik
Strony
579--593
Opis fizyczny
Bibliogr. 28 poz., rys., wz.
Twórcy
  • Department of Electrical Machines, Drives and Measurements Wroclaw University of Science and Technology Smoluchowskiego 19, 50-372 Wroclaw, Poland, karol.wrobel@pwr.edu.pl
  • Department of Electrical Machines, Drives and Measurements Wroclaw University of Science and Technology Smoluchowskiego 19, 50-372 Wroclaw, Poland, krzysztof.szabat@pwr.edu.pl
  • Department of Electrical Machines, Drives and Measurements Wroclaw University of Science and Technology Smoluchowskiego 19, 50-372 Wroclaw, Poland, piotr.serkies@pwr.edu.pl
Bibliografia
  • [1] Tarczewski T., Skiwski M., Niewiara L.J., Grzesiak L.M., High-performance PMSM servo-drive with constrained state feedback position controller, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 66, no. 1, pp. 49–58 (2018).
  • [2] Tarczewski T., Skiwiński M., Grzesiak L.M., Zieliński M., Constrained state feedback control of PMSM servo-drive, Przegląd Elektrotechniczny (in Polish), vol. 94, no. 3, pp. 99–105 (2018).
  • [3] Brock S., Pajchrowski T., Sensorless and energy-efficient PMSM drive for fan application, Archives of Electrical Engineering, vol. 62, no. 2, pp. 217–225 (2013).
  • [4] Ufnalski B., Grzesiak L.M., Repetitive neurocontroller with disturbance feedforward path active in the pass-to-pass direction for a VSI inverter with an output LC filter, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 64, no. 2, pp. 115–125 (2016).
  • [5] Pajchrowski T.,Wójcik A., The problem of rotational speed unevenness in direct drives with permanent magnet synchronous motors, Przegl˛ad Elektrotechniczny (in Polish), vol. 94, no. 5, pp. 128–132 (2018).
  • [6] Brock S., Application of sliding mode observer for sensorless operation of switched reluctance motors, Archives of Electrical Engineering, vol. 56, no. 220, pp. 163–172 (2007).
  • [7] Rojas Ch.A., Rodriguez J.R.,Kouro S.,Villarroel F., Multiobjective Fuzzy-Decision-Making Predictive Torque Control for an Induction Motor Drive, IEEE Transaction on Power Electronics, vol. 32, no. 8, pp. 6245–6260 (2017).
  • [8] Norambuena M., Rodriguez J., Zhang Z., Wang F., Garcia C., Kennel R., A Very Simple Strategy for High-Quality Performance of AC Machines Using Model Predictive Control, IEEE Transaction on Power Electronics, vol. 34, no. 1, pp. 794–800 (2019).
  • [9] Wang F., Zhang Z., Mei X., Rodriguez J., Kennel R., Advanced Control Strategies of Induction Machine: Field Oriented Control, Direct Torque Control and Model Predictive Control, Energies, vol. 11, no. 120, pp. 1–13 (2018).
  • [10] Ahmed A.A., Kwon Koh B., Il Lee Y., A Comparison of Finite Control Set and Continuous Control Set Model Predictive Control Schemes for Speed Control of Induction Motors, IEEE Transaction on Industrial Informatics, vol. 14, no. 4, pp. 1334–1346 (2018).
  • [11] Geyer T., Algebraic Tuning Guidelines for Model Predictive Torque and Flux Control, IEEE Transaction on Industry Applications, vol. 54, no. 5, pp. 4464–4475 (2018).
  • [12] Siami M., Khaburi D.A., Rodriquez J., Simplified Finite Control Set-Model Predictive Control for Matrix Converter-Fed PMSM Drives, IEEE Transaction on Power Electronics, vol. 33, no. 3, pp. 2438–2446 (2018).
  • [13] Preindl M., Bolognani S., Model Predictive Direct Speed Control with Finite Control Set of PMSM Drive Systems, IEEE Transaction on Power Electronics, vol. 28, no. 2, pp. 1007–1015 (2013).
  • [14] Fuentes E.J., Silva C., Quevedo D.E., Silva E.I., Predictive speed control of a synchronous permanent magnet motor, Proceedings of IEEE International Conference on Industrial Technology, Gippsland, Australia, pp. 1–6 (2009).
  • [15] Belda K., Vosmik D., Explicit Generalized Predictive Control of Speed and Position of PMSM Drives, IEEE Transaction on Industrial Electronics, vol. 63, no. 6, pp. 3889–3896 (2016).
  • [16] Wróbel K., Serkies P., Szabat K., Methods of reducing the computational complexity of predictive controller with induction motors, Proceedings of IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, Australia, pp. 1060–1063 (2015).
  • [17] Fuentes E., Kalise D., Rodrigues J., Kennel R., Cascade-Free Predictive Speed Control for Electrical Drives, IEEE Transaction on Industrial Electronics, vol. 61, no. 5, pp. 2176–2184 (2014).
  • [18] Serkies P., Comparison of the dynamic properties of full and cascade speed control based on the FDC method in two-mass drive, Przegl˛ad Elektrotechniczny (in Polish), vol. 92, no. 5, pp. 60–65 (2016).
  • [19] Mayne D., Rawlings J., Rao C., Scokaert P., Constrained model predictive control: Stability and optimality, Automatica, vol. 36, no. 6, pp. 789–814 (2000).
  • [20] Tondel P., Johansen T., Bemporad A., An algorithm for multi-parametric quadratic programming and explicit MPC solutions, Automatica, vol. 39, no. 3, pp. 489–497 (2003).
  • [21] Maciejowski J.M., Predictive Control: with Constraints, Pearson education (2002).
  • [22] Bemporad A., Borrelli F., Morari M., Model predictive control based on linear programming – The explicit solution, IEEE Transaction on Automatic Control, vol. 47, no. 12, pp. 1974–1985 (2002).
  • [23] Seron M., De Dona J., Goodwin G., Global analytical model predictive control with input constraints, Proceedings of 39th IEEE Conference on Decision and Control, Sydney,Australia, pp. 154–159 (2000).
  • [24] Herceg M., Kvasnica M., Jones C., Morari M., Multi-Parametric Toolbox 3.0, Proceedings of European Control Conference, Zurich, Switzerland, pp. 502–510 (2013).
  • [25] Bemporad A., Morari M., Dua V., Pistikopoulos E., The explicit linear quadratic regulator for constrained systems, Automatica, vol. 38, no. 1, pp. 3–20 (2002).
  • [26] Bemporad A., Filippi C., An algorithm for approximate multiparametric convex programming, Computational optimization and applications, vol. 35, no. 1, pp. 87–108 (2006).
  • [27] Tøndel P., Johansen T.A., Bemporad A., Evaluation of piecewise affine control via binary search tree, Automatica, vol. 39, no. 5, pp. 945–950 (2003).
  • [28] Orłowska-Kowalska T., Speed sensorless induction motor drives (in Polish), Wrocław University of Technology Press (2003).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-797d46bb-4185-43b6-8799-27859b73a98f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.