Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 13, no. 1 | 33--52
Tytuł artykułu

MTX-1 – A Potential Replacement for Tetrazene in Primers

Treść / Zawartość
Warianty tytułu
Języki publikacji
Tetrazene (1-amino-1(1H-tetrazol-5-yl)-azo-guanidine hydrate) is widely used in ordnance systems as a sensitizer of primer mixes for use in both percussion and stab applications. It has low thermal and hydrolytic stability compared with other components of primer mixes and there currently exists the need for a replacement with enhanced stability characteristics. MTX-1 (1-[(2E)- 3-(1H-tetrazol-5-yl)triaz-2-en-1-ylidene]methanediamine) meets these criteria and shows great promise as a tetrazene replacement. Preliminary testing of this material has confirmed that MTX-1 has safety and performance properties which are similar to tetrazene and has chemical characteristics, including thermal and hydrolytic stability, which exceed those of tetrazene. MTX-1 has been successfully evaluated against tetrazene in a variety of chemical/output tests, including comparative testing in the PVU-12 primer.
Słowa kluczowe

Opis fizyczny
Bibliogr. 37 poz., rys., tab.
  • Pacific Scientific Energetic Materials Co., 7073 W. Willis Rd., Chandler, AZ 85226, USA
  • Pacific Scientific Energetic Materials Co., 7073 W. Willis Rd., Chandler, AZ 85226, USA,
  • Naval Surface Warfare Center, Indian Head Explosive Ordnance Disposal Technology Division (NSWC IHEODTD), Code TD5, 4104 Evans Way, Indian Head, MD 20640-5102, USA
  • Naval Research Laboratory, Code 6910, 4555 Overlook Ave., Washington, D.C. 20375, USA
  • 1. Hofman K.A., Roth R., AliphatischeDiazosalze, Ber. Dt. Chem. Ges., 1910, 43, 682-688.
  • 2. Duke J.R.C., X-Ray Crystal and Molecular Structure of Tetrazene, (‘Tetracene’), C2H8N10O, J. Chem. Soc. D: Chem. Commun., 1971, (1), 2-3.
  • 3. Kaye S.M., Encyclopedia of Explosives and Related Items (Fedoroff), vol. 8, US Army ARDEC, 1978, p. 373; Library of Congress Catalogue Card Number: 61-61759.
  • 4. Cooper P.W., Explosives Engineering, Wiley-VCH, New York, 1996, p. 323; ISBN 0-471-18686-8.
  • 5. Bird R., The Stab Sensitizing Action of Tetrazene, Materials Research Laboratories Technical Note 362, 1975.
  • 6. Field J., Hot Spot Ignition Mechanisms for Explosives, Acc. Chem. Res., 1992, 25(11), 489-496.
  • 7. a) Spear R.J., Elischer P.P., Studies on Stab Initiation. Sensitization of Lead Azide by Energetic Sensitizers, Aust. J. Chem., 1982, 35(1), 1-13; b) Matyáš R., Pachman J., Primary Explosives, Springer Berlin Heidelberg, 2013, p. 191 and references therein.
  • 8. Bird R., Power A.J., Thermal Decomposition of Tetrazene at 90 °C, Materials Research Laboratories Report MRL-R-710, 1978.
  • 9. Whelan D.J., Fitzgerald M.R., The Kinetics and Thermochemistry of the Thermal Decomposition of the Initiating Explosive, Tetrazene, DSTO Aeronautical and Maritime Research Laboratory Report DSTO-TR-0450, 1996.
  • 10. Fronabarger J.W., Williams M.D., Sanborn W.B., Renz R., Final Report on the Investigation of the Alternatives to Lead Azide and Lead Styphnate, NSWC Contract #N00174-03-C-0012, 30 April 2004.
  • 11. Ilyushin M.A., Tselinsky I.V., Shugalei I.V., Environmentally Friendly Energetic Materials for Initiation Devices, Cent. Eur. J. Energ. Mater., 2012, 9(4), 293-327.
  • 12. a) Fronabarger J.W., Williams M.D., Hartman S., Final Report on New Materials with Enhanced Thermal Stability for Replacement of Tetrazene in Primers, ONR Contract N00014-09-M-0433, 13 September 2010; b) Fronabarger J., Williams M., Alternatives to Tetrazene, US Patent 8 524 019, 2013, EP2 560 933B1, 2014 (WO 2012/003031 A2); c) Fronabarger J., Williams M., Alternatives to Tetrazene, US Patent 8 632 643, 2014.
  • 13. Lieber E., Schiff S., Henry R.A., Finnegan W.G., Acetylation and Ring Closure in Reduction of Nitro- and Nitroamino-Guanidine, J. Org. Chem., 1953, 18(2), 218-228; See also Kuzmenko V.V., Pozharskii A.F., N-Aminoazoles, in: Adv. Heterocycl. Chem., (Katritzky A.R.), Academic Press, San Diego, 1992, 53, 154; ISBN 978-0-12-020753-4.
  • 14. Patinkin S.H., Horwitz J.P., Lieber E., The Structure of Tetrazene, J. Am. Chem. Soc., 1955, 77(3), 562-567.
  • 15. Davis T.L., Chemistry of Powder and Explosives, Coll. Vol., Angriff Press, Hollywood, CA 1943, p. 449; ISBN 0913022-00-4.
  • 16. Bruker 2010. APEX2 v2010.3-0. Bruker AXS Inc., Madison, Wisconsin, USA.
  • 17. Bruker 2009. SAINT v7.68A. Bruker AXS Inc., Madison, Wisconsin, USA.
  • 18. Bruker 2008. XPREP v2008/2. Bruker AXS Inc., Madison, Wisconsin, USA.
  • 19. Bruker 2008. SADABS v2008/1, Bruker AXS Inc., Madison, Wisconsin, USA.
  • 20. Bruker 2008. SHELXTL v2008/4. Bruker AXS Inc., Madison, Wisconsin, USA.
  • 21. AMCP 706-177, 1971. Engineering Design Handbook: Explosives Series; Properties of Explosives of Military Interest, U.S. Army Material Command, Washington D.C. 20315.
  • 22. Meyer R., Explosives, Verlag Chemie GmbH, Essen, 1977, p. 262.
  • 23. ASTM E1269-05, Standard Test Method for Determining Specific Heat Capacity by DSC, ASTM International Standard, 2005.
  • 24. MIL-STD-1751, Rev. A, Safety and Performance Tests for the Qualification of Explosives (High Explosives, Propellants and Pyrotechnics), United States Department of Defense Military Standard, 11 Dec 2001.
  • 25. a) Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), 1702-1706; b) Budrugeac P., Segal E., Applicability of the Kissinger Equation in Thermal Analysis, J. Therm. Anal. Calorim., 2007, 3, 703-707 and references therein.
  • 26. Mei G.C., Pickett J.W., Molecular Modeling of Tetrazene Decomposition, Propellants Explos. Pyrotech., 1998, 23, 172-178.
  • 27. Frank-Kamenetzkii D.A., Diffusion and Heat Transfer in Chemical Kinetics, Plenum Press, New York, 1969.
  • 28. Ramette R., The Dissociation Quotient of Bromcresol Green, J. Chem. Educ., 1963, 40(5), 252.
  • 29. Sućeska M., Test Methods for Explosives, Springer, New York, 1995; ISBN 9780387945552.
  • 30. Dixon J.W., Mood A.M., A Method for Obtaining and Analyzing Sensitivity Data, J. Am. Stat. Assoc., 1948, 43, 109-126; See also MIL-STD-1575, Method 2203.
  • 31. Carlson R.S., Wood R.L., Development and Application of LEESA (Low Energy Electrostatic Sensitivity Apparatus), Proc. 15th Int. Pyrotechnics Seminar, Boulder, CO (USA), 1990.
  • 32. May F.G.J., Australian Test Procedures for Determination of Compatibility and Stability of Military Explosives, J. Hazard. Mater., 1978, 2(2), 127-135.
  • 33. a) Mazzeu M.A.C., Mattos E.C., Iha K., Studies on Compatibility of Energetic Materials by Thermal Methods, J. Aerosp. Technol. Manage., 2010, 2, 53-58; b) NATO STANAG 4147 (ed. 2), Chemical Compatibility of Ammunition Components with Explosives (Non-Nuclear Applications), 2001.
  • 34. Fronabarger J.W., Williams M.D., Sanborn W.B., Bragg J.G., Parrish D.A., Bichay M., DBX-1 − A Lead Free Replacement for Lead Azide, Propellants Explos. Pyrotech., 2011, 36(6), 541-550.
  • 35. Fronabarger J.W., Williams M.D., Sanborn W.B., Parrish D.A., Bichay M., KDNP – A Lead Free Replacement for Lead Styphnate, Propellants Explos. Pyrotech., 2011, 36(5), 459-470.
  • 36. Spear R.J., Redman L.D., Bentley J.R., Sensitization of High Density Silver Azide to Stab Initiation, Materials Research Laboratories Report MRL-R-881, 1983, and references therein.
  • 37. Neyer B.T., A D-Optimality Based Sensitivity Test, Technometrics, 1994, 36(1), 61-70.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.