PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 13, nr 2 | 7--15
Tytuł artykułu

Zastosowanie ANFIS w analizie wyników badań gruntów

Autorzy
Treść / Zawartość
Warianty tytułu
EN
Application of the ANFIS to analysis of results from soil testings
Języki publikacji
PL
Abstrakty
PL
Adaptacyjny system wnioskowania neuronowo-rozmytego ANFIS (Adaptive Neuro-Fuzzy Inference System) w programie Matlab posłużył modelowaniu i określaniu relacji między prędkością ścinania a parametrami wytrzymałościowymi gruntu. Sprawdzono możliwości i umiejętności narzędzia ANFIS w interpretacji wyników badań trójosiowego ściskania iłów pobranych z okolic Olsztyna. Model neuronowo-rozmyty został zbudowany na podstawie zbioru wartości, którymi dysponowano po szeregu badań eksperymentalnych, łącznie z wartościami parametrów wytrzymałościowych gruntu na ścinanie. Baza danych wykorzystana do modelowania neuronowo-rozmytego składa się z 6 różnych parametrów gruntowych dla każdej z 12 prędkości ścinania stosowanych podczas badań trójosiowych. Umiejętność uczenia zweryfikowano na bazie danych testowych - model neuronowo-rozmyty zbudowany został z zestawów szkoleniowych, a dokładność została zweryfikowana przez zestawy testów, z którymi model miał do czynienia po raz pierwszy. Wyniki z modelu ANFIS nie odbiegały znacznie od tych, które zostały uzyskane bezpośrednio z badań fizycznych. System ANFIS okazał się narzędziem niezwykle uniwersalnym i nieskomplikowanym w obsłudze. Pozwolił uwzględnić wieloaspektowość wzajemnych relacji parametrów gruntowych.
EN
The article was analyzed in order to test applicability and capability of the ANFIS tool used for interpretation of results of triaxial shear tests on loamy soils sampled near Olsztyn. The ANFIS system in the Matlab software programme was used to model and determine relationships between the shear stress and soil resistance parameters in a triaxial shear test apparatus. It has been demonstrated that the achieved shear strength parameters are significantly affected by the variables tested during the triaxial experiments and physical parameters of a given soil sample, but also by the loading increment rate during the tests. It is extremely important to adjust the rate of loading during a test according to the preliminary characterization of a tested ground sample so as to have some control over the obtained ground strength parameters. The neuro-fuzzy model has been constructed based on a set of values obtained after a series of experimental tests, including values of ground shear strength parameters. The database used for the neuro-fuzzy modelling consisted of 6 different ground parameters for each of the 12 shear stress rates applied during the triaxial tests. The learnability was verified on a database composed of the test results – a neuro-fuzzy model was built from learning sets and its accuracy was verified by sets of tests to which the model was applied for the first time. The results obtained from the ANFIS model did not diverge substantially from the ones obtained directly by performing the physical tests. The ANFIS proved to be highly universal and easy to operate. It accounted for the multi-faceted nature of interrelationships between ground parameters.
Wydawca

Rocznik
Strony
7--15
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Katedra Geotechniki i Budownictwa Drogowego, Wydział Nauk Technicznych, Uniwersytet Warmińsko-Mazurski, ewa.dybiec@uwm.edu.pl
Bibliografia
  • 1 Suchnicka H., Wytrzymałość gruntów – opis i badania. XI Krajowa Konferencja Mechaniki Gruntów i Fundamentowania – Gdańsk, 25-27 czerwca 1997, s. 47-74.
  • 2 Rutkowski, L. Flexible neuro-fuzzy systems: structures, learning and performance evaluation. Kluwer Academic Publishers, 2004.
  • 3 Akgun A., Sezer E.A., Nefeslioglu H.A., Gokceoglu C., Pradhan B. An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computers and Geosciences, Volume 38, Issue 1, s. 23-34.
  • 4 Gokceoglu C., Zorlu K. A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Engineering Applications of Artificial Intelligence 2004, Vol. 17(1), s. 61–72.
  • 5 Gokceoglu, C. A fuzzy triangular chart to predict the uniaxial compressive strength of Ankara agglomerates from their petrographic composition. Engineering Geology 2002, Vol. 66, s. 39–51.
  • 6 den Hartog M.H., Babuska R., Deketh H.J.R., Alvarez Grima M., Verhoef P.N.W., Verbruggen H.B. Knowledge-based fuzzy model for performance prediction of a rock-cutting trencher. International Journal of Approximate Reasoning 1997, Vol.16, s. 43–66.
  • 7 Cabalar A.F., Cevik A., Gokceoglu C. Some applications of Adaptive Neuro-Fuzzy Inference System (ANFIS) in geotechnical engineering. Computers and Geotechnics Vol. 40, March 2012, s. 14–33.
  • 8 Provenzano P., Ferlisi S., Musso A. Interpretation of a model footing response through an adaptive neural fuzzy inference system. Computers and Geotechnics 2004, Vol.31, s.251–66.
  • 9 Kayadelen C., Gunaydin O., Fener M., Demir A., Ozvan A. Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Systems with Applications 2009, Vol.36,s.11814–26.
  • 10 Gokceoglu C., Yesilnacar E., Sonmez H., Kayabasi A.A. Neuro-fuzzy model for modulus of deformation of jointed rock masses. Computers and Geotechnics 2004, vol. 31, s.375–83.
  • 11 Rangel J.L., Iturraran-Viveros U., Ayala A.G., Cervantes F. Tunnel stability analysis during construction using a neuro-fuzzy system. International Journal for Numerical and Analytical Methods in Geomechanics 2005, Vol. 29, s.1433–56.
  • 12 Zounemat-Kermani M., Beheshti A.A., Ataie-Ashtiani B, Sabbagh-Yazdi S.R. Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Applied Soft Computing 2009, Vol.9, s.746–55.
  • 13 Kalkan E., Akbulut S., Tortum A., Celik S. Prediction of the unconfined compressive strength of compacted granular soils by using inference systems. Environmental Geology 2008, Vol.58, s.1429–40.
  • 14 Kayadelen C., Taskiran T., Gunaydin O., Fener M. Adaptive neuro-fuzzy modeling for the swelling potential of compacted soils. Environmental Earth Sciences 2009, Vol. 59, s.109–15.
  • 15 Pradhan B., Sezer E.A., Gokceoglu C., Buchroithner M.F. Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Transactions on Geoscience and Remote Sensing 2010,Vol.48[12], s. 4164–77.
  • 16 Jang, J.S.R. ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Transactions on Systems, Man, and Cybernetics 1993, vol. 23, s. 665-685.
  • 17 Daniszewska E. Zastosowanie adaptacyjnego, neuronowo-rozmytego systemu wnioskowania ANFIS w analizie wyników badania trójosiowego ściskania gruntów. Praca doktorska, Olsztyn 2012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-68448bdd-9345-4b78-88d2-1c96f812e509
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.