REDUCED–ORDER FRACTIONAL DESCRIPTOR OBSERVERS FOR A CLASS OF FRACTIONAL DESCRIPTOR CONTINUOUS–TIME NONLINEAR SYSTEMS

TADEUSZ KACZOREK

Faculty of Electrical Engineering
Białystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
e-mail: kaczorek@iseb.pw.edu.pl

Fractional descriptor reduced-order nonlinear observers for a class of fractional descriptor continuous-time nonlinear systems are proposed. Sufficient conditions for the existence of the observers are established. The design procedure for the observers is given and demonstrated on a numerical example.

Keywords: fractional system, descriptor system, nonlinear systems, reduced-order observer.

1. Introduction

Fractional linear systems were considered in many papers and books (Kaczorek, 2012b; 2013; 2011a; 2011b; Oldham and Spanier, 1974; Ostalczyk, 2008; Podlubny, 1999; Vinagre et al., 2002). Positive linear systems consisting of \(n \) subsystems with different fractional orders were proposed by Kaczorek (2011a; 2011b). Descriptor (singular) linear systems were investigated by Dodig and Stocic (2009), Cuihong (2012), Dai (1989), Fahmy and O’Reill (1989), Gantmacher (1960), Guang-ren (2010), Kaczorek (2012a; 2012b; 1992), Kucera and Zagalak (1988), Lewis (1983), Luenberger (1978; 1977), Podlubny (1999) and Van Dooren (1979). Eigenvalue and invariant assignments by state and input feedbacks were addressed by Fahmy and O’Reill (1989), as well as Kaczorek (2004; 2015). The computation of Kronecker’s canonical form of a singular pencil was analyzed by Van Dooren (1979).

A new concept of perfect observers for linear continuous-time systems was proposed by Kaczorek (2001; 2015). Observers for fractional linear systems were addressed by Kaczorek (2008), Kociszewski (2013) and Vinagre et al. (2002), and for descriptor linear systems by Kaczorek (2014a). Fractional descriptor full-order observers for fractional descriptor continuous-time linear systems were proposed by Kaczorek (2001), along with reduced-order observers (Kaczorek, 2014b). The stability of positive descriptor systems was investigated by Virnik (2008).

In this paper, fractional descriptor reduced-order observers for a class of fractional descriptor continuous-time nonlinear systems will be proposed and sufficient conditions for the existence of the observer will be established.

The paper is organized as follows. In Section 2, the basic definitions and theorems of fractional descriptor nonlinear continuous-time systems are recalled and their full-order fractional descriptor observers are presented. In Section 3, reduced-order fractional descriptor nonlinear observers are proposed and sufficient conditions for the existence for observers are established. A design procedure of the reduced-order observers and an illustrating example are given in Section 4. Concluding remarks are presented in Section 5.

2. Fractional descriptor systems and their full-order observers

Consider the fractional descriptor continuous-time linear system

\[
E \frac{d^\alpha x}{dt^\alpha} = Ax + Bu, \quad x_0 = x(0), \tag{1a}\\
y = Cx, \tag{1b}
\]
where $d^\alpha x/dt^\alpha$ is the fractional α-order derivative defined by Caputo,

$$
\frac{d^\alpha x(t)}{dt^\alpha} = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{d^n x(t)}{(t-\tau)^{\alpha-n+1}} d\tau,
$$

for some λ where k vectors as in (1),

$$
E,A
$$

and

$$
X
$$

device if and only if the zeros (the eigenvalues of (E,A))

$$
σ(E,A−HC) ⊂ S_r,
$$

where $σ$ denotes the spectrum of the pair.

The proof is also given by Kaczorek (2014a).

From Theorem 1 it follows that the design of a stable observer (6) of the system (1) has been reduced to finding a matrix H such that the eigenvalues of the pair $(E,A−HC)$ are located in the asymptotic stability region.

It is well-known (Guang-ren, 2010; Kaczorek, 1992) that there exists a matrix H such that the eigenvalues of the pair $(E,A−HC)$ are located in the asymptotic stability region if and only if the fractional descriptor system (1) is detectable (Guang-ren, 2010; Kaczorek, 1992), i.e.,

$$
\text{rank} \left[\begin{array}{c} Es_k - A \\ C \end{array} \right] = n
$$

for $s_k \in σ(E,A)$.

The problem of designing the observer (6) of the system (1) can be reduced to the procedure of designing a state-feedback of the form $v = −HTx$ for the dual system (Guang-ren, 2010; Kaczorek, 1992)

$$
E^T d^\alpha x/dt^\alpha = A^T x + C^Tv.
$$

To guarantee that the descriptor state observer is impulse-free, the matrix H must be chosen so that

$$
\text{deg} [\text{det} (Es - A + HC)] = \text{rank} E.
$$

Theorem 2. (Guang-ren, 2010; Kaczorek, 1992) The fractional descriptor system (1) has a full state observer (6) if and only if there exists a matrix H such that all eigenvalues of the pair $(E,A−HC)$ are located in the stable region S_r shown in Fig. 1, i.e.,

$$
\sigma(E,A−HC) ⊂ S_r,
$$

for $σ(E,A)$.

Reduced-order fractional descriptor observers . . .

It is well known (Cuihong, 2012; Kaczorek, 1992) that the finite observers poles (the finite eigenvalues of the pair \((E, A–HC)\) can be arbitrarily assigned if and only if the descriptor system (1) is R-observable, i.e.,

\[
\text{rank } \begin{bmatrix} E_s - A & C \end{bmatrix} = n \quad (12)
\]

for \(s \in \mathbb{C} \).

Therefore, the following theorem has been proved.

Theorem 3. An impulse-free fractional descriptor observer \(\hat{x}(t)\) with an arbitrary prescribed set of poles of the fractional descriptor system (1) satisfying (3) if and only exists if the conditions (17) and (18) are met.

Now let us consider the fractional descriptor continuous-time nonlinear system

\[
E_1 \frac{d^\alpha x}{dt^\alpha} = Ax + f(x, u), \quad x(0) = 0 \quad (13a)
\]

\[
y = Cx, \quad (13b)
\]

where \(x = x(t) \in \mathbb{R}^n, u = u(t) \in \mathbb{R}^m, y = y(t) \in \mathbb{R}^p\) are respectively the state, input and output vectors, \(E, A \in \mathbb{R}^{n \times n}, f(x, u) \in \mathbb{R}^n\) is a continuous vector function of \(x\) and \(u\).

It is assumed that \(\det E = 0\) and (3) is met.

Definition 3. The fractional descriptor continuous-time nonlinear system

\[
E_1 \frac{d^\alpha \hat{x}}{dt^\alpha} = F\hat{x} + f(x, u) + Hy \quad (14)
\]

is called a full-order observer of the nonlinear system (13) if

\[
\lim_{t \to \infty} |x(t) - \hat{x}(t)| = 0, \quad (15)
\]

where \(\hat{x}(t) \in \mathbb{R}^n\) is the estimate of \(x \in \mathbb{R}^n, u \in \mathbb{R}^m\) and \(f(x, u), y \in \mathbb{R}^p\) are the same vectors as in (13).

Definition 4. The fractional descriptor nonlinear system (14) is called a full-order perfect observer of the nonlinear system (13) if

\[
x(t) = \hat{x}(t) \quad \text{for} \quad t > 0. \quad (16)
\]

A design method of full-order perfect observers of nonlinear systems has been proposed by Kaczorek (2015).

3. Reduced-order fractional descriptor nonlinear observers

Consider the fractional descriptor nonlinear system (13) satisfying the assumption (3).

If

\[
\text{rank } C = p, \quad (17)
\]

then there exist a permutation matrix \(P \in \mathbb{R}^{n \times n}\)

\[
CP = \begin{bmatrix} C_1 & C_2 \end{bmatrix}, \quad C_1 \in \mathbb{R}^{p \times p}, \quad C_2 \in \mathbb{R}^{p \times (n-p)} \quad (18)
\]

and the nonsingular matrix

\[
Q_1 = \begin{bmatrix} C_1^{-1} & -C_1^{-1}C_2 \end{bmatrix} \in \mathbb{R}^{n \times n} \quad (19)
\]

such that

\[
\begin{aligned}
\hat{C} &= CPQ_1 \\
&= \begin{bmatrix} C_1 & C_2 \end{bmatrix}Q_1 \\
&= \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} C_1^{-1} & -C_1^{-1}C_2 \end{bmatrix} \equiv \begin{bmatrix} I_p & 0 \end{bmatrix}.
\end{aligned}
\]

Substituting

\[
x = PQ_1 \hat{x} \quad (21)
\]

into (13), we obtain

\[
E_1 \frac{d^\alpha \hat{x}}{dt^\alpha} = APQ_1 \hat{x} + f(x, u) \bigg|_{x=PQ_1 \hat{x}} \quad (22a)
\]

\[
y = Cx = CPQ_1 \hat{x} = \begin{bmatrix} I_p & 0 \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} = \hat{x}_1, \quad \hat{x}_1 \in \mathbb{R}^p, \quad \hat{x}_2 \in \mathbb{R}^{(n-p)}. \quad (22b)
\]

Premultiplying (22a) by a nonsingular elementary row operations matrix \(Q_2 \in \mathbb{R}^{n \times n}\), we obtain

\[
Q_2 E_1 \frac{d^\alpha \hat{x}}{dt^\alpha} = APQ_1 \hat{x} + f(x, u) \bigg|_{x=PQ_1 \hat{x}} \in \mathbb{R}^{p \times p},
\]

\[
E_{21} \in (n-p) \times p, \quad E_{22} \in (n-p) \times (n-p) \quad (23)
\]

and

\[
E_{11} \frac{d^\alpha \hat{x}_1}{dt^\alpha} = A_{11} \hat{x}_1 + A_{12} \hat{x}_2 + f_1(\hat{x}_1, u), \quad (24a)
\]

\[
E_{21} \frac{d^\alpha \hat{x}_1}{dt^\alpha} + E_{22} \frac{d^\alpha \hat{x}_2}{dt^\alpha} = A_{21} \hat{x}_1 + A_{22} \hat{x}_2 + f_2(\hat{x}_1, \hat{x}_2, u), \quad (24b)
\]

where

\[
Q_2 APQ_1 = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad (24c)
\]

\[
A_{11} \in \mathbb{R}^{p \times p}, \quad A_{12} \in \mathbb{R}^{p \times (n-p)}, \quad A_{21} \in \mathbb{R}^{(n-p) \times n}, \quad A_{22} \in \mathbb{R}^{(n-p) \times (n-p)},
\]

\[
\begin{bmatrix} f_1(\hat{x}_1, u) \\ f_2(\hat{x}_1, \hat{x}_2, u) \end{bmatrix} = Q_2 f(PQ \hat{x}, u),
\]

\[
f_1(\hat{x}_1, u) \in \mathbb{R}^p, \quad f_2(\hat{x}_1, \hat{x}_2, u) \in \mathbb{R}^{n-p}.
\]

From (22b) it follows that \(\hat{x}_1 = y\), and for given \(y\) the subvector \(\hat{x}_1\) is known. Therefore, the reduced-order
observer of the fractional descriptor system (1) should reconstruct only the subvector \(\hat{x}_2 = \mathbb{R}^{(n-p)} \).

From (24) we have
\[
E_{22} \frac{d^\alpha \hat{x}_2}{dt^\alpha} = A_{22} \hat{x}_2 + \hat{f}_2(\hat{x}_1, \hat{x}_2, u), \tag{25a}
\]
\[
y = A_{12} \hat{x}_2, \tag{25b}
\]
where
\[
\hat{f}_2(\hat{x}_1, \hat{x}_2, u) = f_2(\hat{x}_1, \hat{x}_2, u) - E_{21} \frac{d^\alpha y}{dt^\alpha} + A_{21} y
\]
and
\[
y = E_{11} \frac{d^\alpha y}{dt^\alpha} - A_{11} y - f_2(\hat{x}_1, \hat{x}_2, u) \tag{25c}
\]
are the new known input and output, respectively.

To find the estimate \(\hat{x}_2 \) of \(x_2 \), the following full-order fractional descriptor nonlinear observer for the system (25) can be applied (Kaczorek, 2014a).

Definition 5. The fractional descriptor continuous-time nonlinear system
\[
E_{22} \frac{d^\alpha \hat{x}_2}{dt^\alpha} = F \hat{x}_2 + \hat{f}_2(\hat{x}_1, \hat{x}_2, u) + H\hat{y}, \tag{26}
\]
where \(\hat{x}_2 \in \mathbb{R}^{n-p}, F \in \mathbb{R}^{(n-p)\times(n-p)}, H \in \mathbb{R}^{(n-p)\times p}, \) is called a reduced-order fractional descriptor observer for the nonlinear system (13) if
\[
\lim_{t \to -\infty} [\hat{x}_2(t) - \hat{x}_2(t)] = 0. \tag{27}
\]

Applying Theorem 1 to the fractional descriptor system (25), we obtain the following result.

Theorem 4. For the fractional descriptor nonlinear system (13) the reduced-order observer (26) exists if the system (25) is detectable, i.e.,
\[
\text{rank} \left[\begin{array}{c} E_{22}s - A_{22} \\ A_{12} \end{array} \right] = n - p \tag{28}
\]
for \(s_k \in \sigma(E_{22}, A_{22}) \).

It is well known (Guang-ren, 2010) that the eigenvalues of \((E_{22}, A_{22}) \) (the finite poles of the observer) can be arbitrarily assigned if and only if the descriptor system (25) is \(R \)-observable, i.e.,
\[
\text{rank} \left[\begin{array}{c} E_{22}s - A_{22} \\ A_{12} \end{array} \right] = n - p \tag{29}
\]
for all \(s \in \mathbb{C} \).

To guarantee that the descriptor observer (26) is impulse-free, the matrix \(H \) should be chosen so that (Guang-ren, 2010)
\[
\text{deg}\{\det[E_{22}s - A_{22} + HA_{12}]\} = \text{rank} \, E_{22}. \tag{30}
\]
Therefore, the following theorem has been proved.

Theorem 5. The impulse-free reduced-order observer (26) for the fractional descriptor system (13) satisfying (5) exists if the conditions (24c), (29), and (30) are met.

Remark 1. If \(E_{22} = 0 \) and \(\det A_{22} \neq 0 \), then from (25a) we have
\[
\hat{x}_2 = -A_{22}^{-1} \hat{f}_2(\hat{x}_1, \hat{x}_2, u), \tag{31}
\]
and we can find \(\hat{x}_2 \) without any observer.

Remark 2. If \(\det E_{22} \neq 0 \), then from (25a) we have
\[
\frac{d^\alpha \hat{x}_2}{dt^\alpha} = E_{22}^{-1} A_{22} \hat{x}_2 + E_{22}^{-1} \hat{f}_2(\hat{x}_1, \hat{x}_2, u), \tag{32}
\]
and the estimate \(\hat{x}_2 \) of \(x_2 \) can be found using the classical (standard) fractional observer (Kociszewski, 2013; Kaczorek, 2004).

4. Procedure and examples

To design the reduced-order observer (26) for the fractional descriptor nonlinear system (13), the following procedure can be used.

Procedure 1.

1. **Step 1.** Find a permutation matrix \(P \) and a nonsingular matrix \((19) \) transferring the matrix \(C \) to the form \((20) \).

2. **Step 2.** Find the elementary row operations matrix \(Q_2 \), and using (23) and (24c) compute the matrices \(E_{11}, E_{21}, E_{22}, A_{11}, A_{12}, A_{21}, A_{22}, \) and \(f_2(\hat{x}_1, u), f_2(\hat{x}_1, \hat{x}_2, u) \).

3. **Step 3.** Check the conditions (25) and (30) for some \(H \in \mathbb{R}^{(n-p)\times p} \).

4. **Step 4.** Using
\[
F = A_{22} - HA_{12}, \tag{33}
\]
find a matrix \(H \) such that the pair \((E_{22}, F)\) has the desired eigenvalues located in the stability region \(S_F \).

Step 5. Find Eqn. (26) of the desired fractional descriptor nonlinear observer.

Example 1. Consider the fractional descriptor system (13) with
\[
E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix},
\]
\[
A = \begin{bmatrix} -1 & 0 & 2 & 1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \tag{34}
\]
\[
f(x, u) = \begin{bmatrix} x_2^2 + u^2 \\ x_2 x_4 + 2u \\ x_1 x_2 + x_3^2 + x_2 u \\ x_2 x_3 + 2x_1 u^2 \end{bmatrix},
\]
\[
C = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}.
\]
The system satisfies the condition (35) since
\[\det[ES - A] = \begin{bmatrix} s + 1 & 0 & -2 & -1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & s \\ 0 & 0 & s & -1 \end{bmatrix} = 2(s + 1)(1 - s^2) \neq 0. \] (35)

Using Procedure 1, we obtain what follows.

Step 1. In this case the permutation matrix is \(P = I_4 \) (the identity matrix)
\[
CP = \begin{bmatrix} C_1 & C_2 \end{bmatrix},
\]
\[
C_1 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},
\]
\[
Q_1 = \begin{bmatrix} C_1^{-1} & -C_1^{-1}C_2 \\ 0 & I_{n-p} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},
\] (36)

and
\[
\dot{C} = CPQ_1 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}. \] (37)

The new state vector is given by
\[
\bar{x} = P^{-1}Q_1^{-1}x = \begin{bmatrix} x_2 + x_4 \\ x_1 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \bar{x}_3 \\ \bar{x}_4 \end{bmatrix}, \]
\[
\bar{x}_1 = \begin{bmatrix} x_2 + x_4 \\ x_1 \end{bmatrix}, \quad \bar{x}_2 = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}. \] (38)

Step 2. The matrix of elementary operations is equal to \(Q_2 = I_4 \) and
\[
EQ_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} E_{11} & 0 \\ 0 & E_{22} \end{bmatrix},
\]
\[
E_{11} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad E_{22} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \] (39a)
\[
AQ_1 = \begin{bmatrix} -1 & 0 & 2 & 1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{11} = \begin{bmatrix} 0 & -1 & 2 & 1 \\ -2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \]
\[
A_{12} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \quad A_{21} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \] (39b)

\[
f_1(\bar{x}_1, u) = \begin{bmatrix} f_1(\bar{x}_1, u) \\ f_2(\bar{x}_1, \bar{x}_2, u) \end{bmatrix} = f(x, u). \] (40)

Step 3. The conditions (28) and (40) are satisfied since
\[
\text{rank} \begin{bmatrix} E_{22}s - A_{12} \\ A_{12} \end{bmatrix} = \text{rank} \begin{bmatrix} -1 & s \\ s & -1 \end{bmatrix} = 2 \quad \text{for all } s \in \mathbb{C}, \text{ and for}
\]
\[
H = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}
\]
we have
\[
\deg\left(\det[E_{22}s - A_{12} + HA_{12}]\right) = \deg\left\{\det \begin{bmatrix} -1 + 2h_{11} & s + h_{11} + 2h_{12} \\ s + 2h_{21} & -1 + h_{21} + 2h_{22} \end{bmatrix}\right\} = 2 = \text{rank}E_2. \] (42)

Step 4. Using (33) we obtain
\[
F = A_{22} - HA_{12} = \begin{bmatrix} 1 - 2h_{11} & -2h_{12} - h_{11} \\ -2h_{21} & 1 - 2h_{22} - h_{21} \end{bmatrix}. \] (43)

Let the desired eigenvalues of the pair \((E_{22}, F)\) be \(s_{d1} = s_{d2} = -10.\) Then
\[
\det[E_{22}s - F] = \begin{vmatrix} 2h_{11} - 1 & s + h_{11} + 2h_{12} \\ s + 2h_{21} & h_{21} + 2h_{22} - 1 \end{vmatrix} = -s^2 - (2h_{21} + h_{11} + 2h_{12})s + (2h_{11} - 1)(h_{21} + 2h_{22} - 1) - 2h_{21}(h_{11} + 2h_{12}) = -(s + 10)^2 = -(s^2 + 20s + 100) \] (44)
for $h_{11} = -2h_{12}$, and

$$2h_{21} = -20,$$

$$(2h_{11} - 1)(h_{21} - 2h_{22} - 1) - 4h_{12}h_{21} = -100. \quad (45)$$

Solving (45), we obtain (for example)

$h_{11} = 5.5, \quad h_{12} = -2.25, \quad h_{21} = 10, \quad h_{22} = -9.5. \quad (46)$

Step 5. In this case, from (25c) we have

$$\dot{\hat{x}}_2(\bar{x}_1, \bar{x}_2, u) = f_2(\bar{x}_1, \bar{x}_2, u) - E_{21} \frac{d^\alpha y}{dt^\alpha} + A_{21} y$$

$$= \begin{bmatrix} x_1x_2 + x_3^2 + x_2u \\ x_2x_3 + 2x_1u^2 \end{bmatrix}, \quad \hat{y} = E_1 \frac{d^\alpha y}{dt^\alpha} + A_{11} y - f_1(\bar{x}_1, u)$$

$$= \begin{bmatrix} x_2^2 + u^2 \\ x_2x_4 + 2u \end{bmatrix}. \quad (47)$$

The desired reduced-order fractional observer of the system is described by the equation

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{d^\alpha \hat{x}_2}{dt^\alpha} = \begin{bmatrix} 20 & 10 \\ -10 & 0 \end{bmatrix} \begin{bmatrix} \hat{x}_2 \\ \hat{y} \end{bmatrix}.$$

or

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{d^\alpha \hat{x}_2}{dt^\alpha} = \begin{bmatrix} -20 & 10 \\ -10 & 0 \end{bmatrix} \begin{bmatrix} \hat{x}_2 \\ \hat{y} \end{bmatrix}.$$

5. Concluding remarks

Fractional descriptor reduced-order nonlinear observers for a class of fractional descriptor continuous-time nonlinear systems have been proposed. A design procedure for fractional descriptor observers has been proposed and illustrated on a numerical example.

The discussion can be easily extended to perfect fractional descriptor reduced-order observers and fractional descriptor discrete-time linear systems. An open problem is extension to fractional descriptor 2D continuous-discrete nonlinear systems.

Acknowledgment

This work was supported by the National Science Centre in Poland under the work no. 2014/13/B/ST7/03467.

References

Reduced-order fractional descriptor observers . . .

Vinagre, B.M., Monje, C.A. and Calderon, A.J. (2002). Fractional order systems and fractional order control actions, Lecture 3, IEEE CDC’02, Las Vegas, NV, USA.

Received: 19 January 2015
Revised: 10 March 2015
Accepted: 10 June 2015