PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2018 | Vol. 48, nr 4 | 633--645
Tytuł artykułu

Investigation of hybrid Ge QDs/Si nanowires solar cell with improvement in cell efficiency

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the structure of a high-efficiency solar cell is presented by using a combination of quantum dots of germanium arrays and silicon nanowires on a thin film silicon layer. Due to the low absorption coefficient of silicon, this type of solar cell does not have high efficiency. According to the capability of the quantum structure in absorbing the incident photons and the generation of electron-hole pairs, this structure is proposed. Moreover, nanowires as an appropriate suggestion are applied in our work aiming to improve light scattering and optical photon absorption for the generation of carriers. Both of the electrical and optical characteristics of the solar cell are calculated by using a finite-difference time-domain method. Owing to the change of the nanowire length and increasing the number of quantum dot in our work, maximum power absorption is achieved. The achieved results provide a considerable improvement in efficiency and short-circuit current density. The efficiency is improved up to 17.5% and the short-circuit current density in the active layer of thickness 1170 nm has been provided to be 42.6 mA/cm2. The open circuit voltage for this cell is calculated to be 0.47 V. The achieved results provide a considerable improvement in efficiency and short-circuit current density in comparison with previously published method.
Wydawca

Czasopismo
Rocznik
Strony
633--645
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Nanophotonic and Optoelectronic Research Laboratory (NORLab), Shahid Rajaee Teacher Training University, 16788-15811, Tehran, Iran, s_olyaee@srttu.edu
  • Nanophotonic and Optoelectronic Research Laboratory (NORLab), Shahid Rajaee Teacher Training University, 16788-15811, Tehran, Iran
Bibliografia
  • [1] TRUPKE T., GREEN M.A., WÜRFEL P., Improving solar cell efficiencies by up-conversion of sub-band-gap light, Journal of Applied Physics 92(7), 2002, pp. 4117–4122.
  • [2] GHAHREMANIRAD E., BOU A., OLYAEE S., BISQUERT J., Inductive loop in the impedance response of perovskite solar cells explained by surface polarization model, Journal of Physical Chemistry Letters 8(7), 2017, pp. 1402–1406.
  • [3] GHAHREMANIRAD E., OLYAEE S., NEJAND B.A., AHMADI V., ABEDI K., Hexagonal array of mesoscopic HTM based perovskite solar cell with embedded plasmonic nanoparticles, Physica Status Solidi B: Basic Solid State Physics 255(3), 2017, article ID 1700291.
  • [4] LUQUE A., MARTÍ A., The intermediate band solar cell: progress toward the realization of an attractive concept, Advanced Materials 22(2), 2010, pp. 160–174.
  • [5] KECHIANTZ A.M., KOCHARYAN L.M., KECHIYANTS H.M., Band alignment and conversion efficiency in Si/Ge type-II quantum dot intermediate band solar cells, Nanotechnology 18(40), 2007, article ID 405401.
  • [6] GARNETT E.C., BRONGERSMA M.L., YI CUI, MCGEHEE M.D., Nanowire solar cells, Annual Review of Materials Research 41, 2011, pp. 269–295.
  • [7] FEIFEL M., RACHOW T., BENICK J., OHLMANN J., JANZ S., HERMLE M., DIMROTH F., LACKNER D., Gallium phosphide window layer for silicon solar cells, IEEE Journal of Photovoltaics 6(1), 2016, pp. 384–390.
  • [8] DUTTA M., THIRUGNANAM L., VAN TRINH P., FUKATA N., High efficiency hybrid solar cells using nanocrystalline Si quantum dots and Si nanowires, ACS Nano 9(7), 2015, pp. 6891–6899.
  • [9] LIMIN TONG, JINGYI LOU, MAZUR E., Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides, Optics Express 12(6), 2004, pp. 1025–1035.
  • [10] HUA BAO, XIULIN RUAN, Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications, Optics Letters 35(20), 2010, pp. 3378–3380.
  • [11] XIN YAN, CHEN ZHANG, JIAMIN WANG, XIA ZHANG, XIAOMIN REN, A high-efficiency Si nanowire array/ perovskite hybrid solar cell, Nanoscale Research Letters 12(1), 2017, article ID 14.
  • [12] PATTANTYUS-ABRAHAM A.G., KRAMER I.J., BARKHOUSE A.R., XIHUA WANG, KONSTANTATOS G., DEBNATH R., LEVINA L., RAABE I., NAZEERUDDIN M.K., GRÄTZEL M., SARGENT E.H., Depleted-heterojunction colloidal quantum dot solar cells, ACS Nano 4(6), 2010, pp. 3374–3380.
  • [13] JIANG TANG, KEMP K.W., HOOGLAND S., JEONG K.S., HUAN LIU, LEVINA L., FURUKAWA M., XIHUA WANG, DEBNATH R., DONGKYU CHA, KANG WEI CHOU, FISCHER A., AMASSIAN A., ASBURY J.B., SARGENT E.H., Colloidal-quantum-dot photovoltaics using atomic-ligand passivation, Nature Materials 10(10), 2011, pp. 765–771.
  • [14] SEOKHUN YUN, YOUNG HUN PAIK, SUNG JIN KIM, DOO GUN KIM, TAEKSOO JI, JAE CHEOL SHIN, High efficiency AZO-InP nanopillar-based heterojunction solar cells, Current Applied Physics 16(7), 2016, pp. 726–730.
  • [15] KLEIN L.A., Growth and Applications of Germanium Nanowires, A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey, 2011.
  • [16] LEE E.-K., KAMENEV B.V., TSYBESKOV L., SHARMA S., KAMINS T.I., Carrier transport in Ge nanowire/ Si substrate heterojunctions, Journal of Applied Physics 101(10), 2007, article ID 104303.
  • [17] VAN DER WAART L., Quantum dot/Nanowire Hybrid Nanostructure for Solar Cell Applications, Doctoral Dissertation, FOM Institute, 2016.
  • [18] ASPNES D.E., STUDNA A.A., Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Physical Review B 27(2), 1983, p. 985.
  • [19] ZHAOYUN GE, LING XU, RENQI ZHANG, ZHAOGUO XUE, HONGYU WANG, JUN XU, YAO YU, WEINING SU, ZHONGYUAN MA, KUNJI CHEN, Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells, Applied Surface Science 334, 2015, pp. 15–18.
  • [20] YAOHUI ZHAN, XIAOFENG LI, YAO LI, Numerical simulation of light-trapping and photoelectric conversion in single nanowire silicon solar cells, IEEE Journal of Selected Topics in Quantum Electronics 19(5), 2013, article ID 4000208.
  • [21] MING-YI LEE, YI-CHIA TSAI, YIMING LI, SEIJI SAMUKAWA, Numerical simulation of physical and electrical characteristics of Ge/Si quantum dots based intermediate band solar cell, 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), IEEE, 2016, pp. 361–364.
  • [22] HAIBIN WANG, TAKAYA KUBO, JOTARO NAKAZAKI, TAKUMI KINOSHITA, HIROSHI SEGAWA, PbS-quantum-dot-based heterojunction solar cells utilizing ZnO nanowires for high external quantum efficiency in the near-infrared region, Journal of Physical Chemistry Letters 4(15), 2013, pp. 2455–2460.
  • [23] MEILI WANG, YAN WANG, Fabrication of length tunable ZnO nanowire arrays and investigation on their effect for dye-sensitized solar cells, Journal of Material Sciences and Engineering 1(1), 2012, article ID 1000101.
  • [24] KANG L. WANG, DONGHO CHA, JIANLIN LIU, CHEN C., Ge/Si self-assembled quantum dots and their optoelectronic device applications, Proceedings of the IEEE 95(9), 2007, pp. 1866–1883.
  • [25] WANG, WENBO, XINHUA LI, LONG WEN, YUFENG ZHAO, HUAHUA DUAN, BUKANG ZHOU, TONGFEI SHI, XUESONG ZENG, NING LI, YUQI WANG, Optical simulations of P3HT/Si nanowire array hybrid solar cells, Nanoscale Research Letters 9(1), 2014, article ID 238.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5dba2854-8470-4441-9394-e48913eed952
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.