Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. LXV, nr 4 | 515--525
Tytuł artykułu

Strength tests of the polymers used in dental prosthetics

Treść / Zawartość
Warianty tytułu
Języki publikacji
The functionality of a prosthesis is determined by clinical procedures, the manufacturing technology applied, the material used and its strength parameters. The aim of the paper is to evaluate the static strength and fatigue strength of acrylic construction materials directly after the process of polymerisation and for aged materials. It has been confirmed that the deformation speed of the tested materials has an evident impact on their mechanical characteristics.With greater deformation speed, a consistent increase in the material elasticity was observed in static compression tests, which was accompanied by a reduction in engineering stresses at the final stage of deformation. The greatest fatigue strength was observed for Vertex. It was by about 33% greater than the strength of Villacryl – the material that has the lowest fatigue properties. The resistance of acrylic polymers to cyclic loading applied with the frequency of 1 Hz may become an indication for the selection of the material to be used in the clinical procedures in which a patient is provided with full dentures.

Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab.
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland,
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland,
  • Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics, ul. Montelupich 4, 31-155 Cracow, Poland,
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland,
  • [1] C. Gebelein and F. Koblitz. Biomedical and Dental Applications of Polymers. Springer Science & Business Media, 2013.
  • [2] K.J. Anusavice, C. Shen, and H.R. Rawls. Phillips’ Science of Dental Materials. Elsevier Health Sciences, 2014.
  • [3] D.M. dos Santos, M.C. Goiato, M.A.C. Sinhoreti, A.Ú.R. Fernandes, P. do Prado Ribeiro, and S.F. de Carvalho Dekon. Color stability of polymers for facial prosthesis. The Journal of Craniofacial Surgery, 21(1):54–58, 2010. doi: 10.1097/SCS.0b013e3181c3b58e.
  • [4] R. Gautam, R.D. Singh, V.P. Sharma, R. Siddhartha, P. Chand, and R. Kumar. Biocompatibility of polymethylmethacrylate resins used in dentistry. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B(5):1444–1450, 2012. doi: 10.1002/jbm.b.32673.
  • [5] N. Faur, C. Bortun, L. Marsavina, A. Cernescu, and O. Gombosi. Durability studies for complete dentures. Key Engineering Materials, 417-418:725–728, 2010. doi: 10.4028/
  • [6] R.L. Sakaguchi and J.M. Powers. Craig’s Restorative Dental Materials. 13th edition. Mosby, London 2012.
  • [7] S.F. Rosenstiel, M.F. Land, and J. Fujimoto. Contemporary Fixed Prosthodontics. 5th edition, Elsevier Health Sciences. Mosby, 2015.
  • [8] R.Wang, J. Tao, B.Yu, and L. Dai. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. The Journal of Prosthetic Dentistry, 111(4):318–326, 2014. doi: 10.1016/j.prosdent.2013.07.017.
  • [9] S.W. Majewski. Contemporary Dental Prosthetics. Theoretical Basics and Clinical Practice. Elsevier Urban & Partner Publishing House, Wrocław, 2014 (in Polish).
  • [10] W. Ryniewicz, A.M. Ryniewicz, and Ł. Bojko. The effect of a prosthetic crown’s design on the accuracy of mapping an abutment teeth’s shape. Measurement, 91:620–627, 2016. doi: 10.1016/j.measurement.2016.05.019.
  • [11] W. Ryniewicz, A.M. Ryniewicz, and Ł. Bojko. Crown modeling and evaluation of the accuracy of the shape mapping of prosthetic pillars. Electrotechnical Review, 90(5):146–149, 2014 (in Polish).
  • [12] W. Ryniewicz, A.M. Ryniewicz, and Ł. Bojko. Evaluation of tightness of prosthetic crowns depending on their technology. Electrotechnical Review, 91(5):45–48, 2015 (in Polish).
  • [13] A.F. Bettencourt, C.B. Neves, M.S. de Almeida, L.M. Pinheiro, S. Aantes e Oliveira, L.P. Lopes, and M.F. Castro. Biodegradation of acrylic based resins: A review. Dental Materials, 26(5):e171–e180, 2010. doi: 10.1016/
  • [14] H.H. Lee, C.J. Lee, and K. Asaoka. Correlation in the mechanical properties of acrylic denture base resins. Dental Materials Journal, 31(1):157–164, 2012. doi: 10.4012/dmj.2011-205.
  • [15] G.K. Meng, K.H. Chung, M.L. Fletcher-Stark, and H. Zhang. Effect of surface treatments and cyclic loading on the bond strength of acrylic resin denture teeth with autopolymerized repair acrylic resin. The Journal of Prosthetic Dentistry, 103(4):245–252, 2010. doi: 10.1016/S0022-3913(10)60038-8.
  • [16] R. Banerjee, S. Banerjee, P.S. Prabhudesai, and S.V. Bhide. Influence of the processing technique on the flexural fatigue strength of denture base resins: an in vitro investigation. Indian Journal of Dental Research, 21(3):391–395, 2010.
  • [17] R.K. Alla, S. Sajjan,V.R. Alluri, K. Ginjupalli, and N. Upadhya. Influence of fiber reinforcement on the properties of denture base resins. Journal of Biomaterials and Nanobiotechnology, 4(1):91–97, 2013. doi: 0.4236/jbnb.2013.41012.
  • [18] N.V. Asar, H. Albayrak, T. Korkmaz, and I. Turkyilmaz. Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins. The Journal of Advanced Prosthodontics, 5(3):241–247, 2013. doi: 10.4047/jap.2013.5.3.241.
  • [19] O. Gurbuz, F. Unalan, and I. Dikbas. Comparative study of the fatigue strength of five acrylic denture resins. Journal of the Mechanical Behavior of Biomedical Materials, 3(8):636–639, 2010. doi: 10.1016/j.jmbbm.2010.06.005.
  • [20] P.F. Kappert and J.R. Kelly. Cyclic fatigue testing of denture teeth for bulk fracture. Dental Materials, 29(10):1012–1019, 2013. doi: 10.1016/
  • [21] N.M. Ajaj-ALKordy and M.H. Alsaadi. Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins. The Saudi Dental Journal, 26(1):15–18, 2014. doi: 10.1016/j.sdentj.2013.12.005.
  • [22] S.I. Salih, J.K. Oleiwi, and Q.A. Hamad. Investigation of fatigue and compression strength for the PMMA reinforced by different system for denture applications. International Journal of Biomedical Materials Research, 3(1):5–13, 2015. doi: 10.11648/j.ijbmr.20150301.13.
  • [23] J.P. Singh, R.K. Dhiman, R.P.S. Bedi, and S.H. Girish. Flexible denture base material: A viable alternative to conventional acrylic denture base material. Contemporary Clinical Dentistry, 2(4):313–317, 2011. doi: 10.4103/0976-237X.91795.
  • [24] S.S. Abdulwahhab. High-impact strength acrylic denture base material processed by autoclave. Journal of Prosthodontic Research, 57(4):288-293, 2013. doi: 10.1016/j.jpor.2013.08.004.
  • [25] L.S. Acosta-Torres, L.M. López-Marín, R.E .Nunez-Anita, G. Hernández-Padrón, and V.M. Castaño. Biocompatible metal-oxide nanoparticles: nanotechnology improvement of conventional prosthetic acrylic resins. Journal of Nanomaterials, 12:1–8, 2011. doi: 10.1155/2011/941561.
  • [26] D. Edelhoff, J. Schweiger, and J.F. Güth. CAD/CAM-generated high-density polymer restorations for the pretreatment of complex cases: A case report. Quintessence International, 43(6):457–467, 2012.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.