PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 12, no 2 | 188--196
Tytuł artykułu

Application of the elastic-plastic model in the analysis of the displacement in a rock mass

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The concern of this article is the analysis of the impact of increased volume (dilation) and decreased strength of the rock material in the plastic zone on the displacement field in the vicinity of the roadway. Elastic-plastic model of the behaviour of the rock material and the strength criterion of Coulomb-Mohr were assumed. The volume change of the rock material is controlled by the angle of dilation ψ, which determines dilation parameter β that is taken into account in the analysis. The influence of parameter β and the strength of the rock material, after crossing the border state of stress, in the field of displacements in the vicinity of the excavation and rock pressure on the elastic support of the excavation was proved. The relationships determining displacement fields in the plastic zone which were obtained with consideration to in this zone of both the elastic and plastic displacement, as well as the relationships which were obtained without elastic deformations was discussed. The exact form of the equation for the displacement field in the plastic zone depends on how the elastic deformation in the plastic zone is defined. There are three ways of describing these deformations. In the first method it is assumed that in plastic deformation area the elastic deformation constants are equal to the deformation constants at the plastic and elastic border. The second method of description is based on the assumption that the plastic zone is a thick-walled ring whose edges: internal and external have been appropriately debited. In the third method, elastic deformations in the plastic zone were made dependent on the state of stress in the zone. The results are illustrated in a form of response curves of the rock mass.
Wydawca

Rocznik
Strony
188--196
Opis fizyczny
Bibliogr. 16 poz., fig.
Twórcy
  • Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland, h.marczak@pollub.pl
Bibliografia
  • 1. Brown E.T., Bray J.W., Ladanyi B. and Hoek E. Ground response curve for rock tunnels. Journal of Geotechnical Engineering, 109(1), 1983, 15–39.
  • 2. Brady B.H.G. and Brown E.T. Rock Mechanics for Underground Mining. Chapman&Hall, 1993.
  • 3. Carranza-Torres C. Dimensionless graphical representation of the exact elasto-plastic solution of a circular tunnel in a Mohr–Coulomb material subject to uniform far-field stresses. Rock Mechanics and Rock Engineering, 36(3), 2002, 237–253.
  • 4. Carranza-Torres C. Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 41(3), 2004, 480–481.
  • 5. Filcek H., Walaszczyk J. and Tajduś A. Metody komputerowe w geomechanice górniczej. Śląskie Wydawnictwo Techniczne, Katowice, 1994.
  • 6. Gschwandtner G.G. and Galler R. Input to the application of the convergence confinement method with time-dependent material behaviour of the support. Tunnelling and Underground Space Technology, 27(1), 2012, 13–22.
  • 7. Izbicki R. and Mróz Z. Metody nośności granicznej w mechanice gruntów i skał. PWN, Warszawa- Poznań, 1976.
  • 8. Marczak H. Wpływ spójności górotworu na jego zachowanie się w otoczeniu wyrobisk korytarzowych. Wiadomości Górnicze, 1, 2013, 15-21.
  • 9. Mróz Z. and Kruciński S. Sprężysto-plastyczna analiza stanu naprężenia i przemieszczenia w sąsiedztwie wyrobiska kołowego z uwzględnieniem osłabienia materiału skalnego. Archiwum Górnictwa, 29(2), 1984, 205-229.
  • 10. Oreste P. The Convergence-Confinement Method: Roles and Limits in Modern Geomechanical Tunnel Design. American Journal of Applied Sciences, 6(4), 2009, 757-771.
  • 11. Panet M. Le calcul des tunnels par la méthode convergence-confinement. Presses de l’Ecole Nationale des Ponts et Chaussées, 1995.
  • 12. Pilecki Z. Metoda oceny zachowania się masywu skalnego wokół wyrobiska podziemnego. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków, 59, 1999.
  • 13. Rułka K. and Stochel D. Obudowy powłokowe dla wyrobisk korytarzowych i komorowych. Zasady projektowania i doboru. Pr. Nauk. GIG, Katowice, 858, 2004.
  • 14. Sharan S.K. Elastic–brittle–plastic analysis of circular openings in Hoek–Brown media. International Journal of Rock Mechanics and Mining Sciences, 40, 2003, 817–824.
  • 15. Shin Y.J., Kim B.M., Shin J.H. and Lee I.M. The ground reaction curve of underwater tunnels considering seepage forces. Tunnelling and Underground Space Technology, 25, 2010, 315-324.
  • 16. Wang Y. Ground response of circular tunnel in poorly consolidated rock. ASCE J. Geotech. Eng., 122, 1996, 703-708.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5b0de68b-0bca-4cfa-9ce1-d376aeef819f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.