Evaluating Workers’ Exposure to Metalworking Fluids and Effective Factors in Their Dispersion in a Car Manufacturing Factory

Abbasali Mokhtari Andani, Farideh Golbabaei, Seyed Jamaladdin Shahtaheri & Abbas Rahimi Foroushani

a Department of Industrial Safety, Islamic Azad University, Dehaghan, Iran
b School of Public Health, Tehran University of Medical Science, Tehran, Iran

Published online: 08 Jan 2015.

To link to this article: http://dx.doi.org/10.1080/10803548.2014.11077054

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
Evaluating Workers’ Exposure to Metalworking Fluids and Effective Factors in Their Dispersion in a Car Manufacturing Factory

Abbasali Mokhtari Andani
Department of Industrial Safety, Islamic Azad University, Dehaghan, Iran

Farideh Golbabaei
Seyed Jamaladdin Shahtaheri
Abbas Rahimi Foroushani
School of Public Health, Tehran University of Medical Science, Tehran, Iran

Introduction. Metalworking fluids (MWFs), which are widely used in metalworking operations, can cause different adverse effects, e.g., dermal and respiratory disorders, and cancer. Evaluating workers’ exposure to MWF mists and the effective factors in their dispersion were the purpose of this study. Materials and Method. Seventy-five out of 300 workers working in metalworking workshops were randomly selected. MWF concentrations were measured with the National Institute for Occupational Safety and Health (NIOSH) 5524 method.

Results. The results indicated that exposure to MWF mists in one workshop was higher than in the other ones ($p < .05$). The findings also showed that temperature was an effective factor in the dispersion of MWF mists ($p < .05$).

Discussion. The exposure of almost all workers was under the threshold limit value of 5 mg/m^3, but it was over the value recommended by NIOSH of 0.5 mg/m^3. Air temperature was an effective factor in workers’ exposure ($r = .576$).

Metalworking fluid occupational exposure temperature air velocity total mist thoracic mist

1. INTRODUCTION

Metalworking fluids (MWFs) are used in metalworking operations for cooling and lubricating [1, 2, 3, 4, 5, 6, 7]. Car manufacturing is an industry in which workers are exposed to these chemicals, due to metalworking operations. Since MWFs consist of different chemical compounds, e.g., chlorides, phosphates, nitrates, ethanolamines and bio-acids, which are used in producing MWFs, workers may be exposed to those compounds and show related side effects [1, 4, 7, 8, 9, 10]. Dermal and respiratory disorders, and cancer are the most frequently reported side effects of exposure to MWFs [11, 12, 13, 14].

A study on 766 dead workers who had at least 10 years’ work history with MWFs found that the mortality rate from lung cancer was twofold higher than the expected rate [15]. Also, another part of that study, which was done on 350 stone workers who had been exposed to MWFs for 8–10 h a day, found that lung cancer was 1.20 and respiratory diseases were 1.35 times over the expected rates [15]. Other studies also recognized MWFs as a factor for rapid development of pulmonary pneumopathy or other respiratory diseases [16, 17, 18]. Eshraghi
and Eisen, Smith, Kriebel, et al. [20] showed that the prevalence of pulmonary disorders was higher than the expected amounts among turners. Another study showed that machine workers’ exposure increased nasal and throat symptoms, cough, wheezing, breathlessness and asthma even in environments with exposure levels below the current occupational exposure limit for oil mists [21].

During metal machining, the rotating machine tool or grinding wheel generates fine droplets and vapor, which can cause occupational health problems [22]. Different factors, including the spinning rate of tools, type of machineries, controlling measures, and maintenance of machineries, can influence the emission of MWFs in the environment. Regarding the extensive use of MWFs in industries and, as a result, exposure of a large number of workers to their mists, and also regarding theirs effects on health, this study was designed and implemented to (a) evaluate the exposure of workers in a car manufacturing factory to MWFs, (b) examine the effects of factors, such as season and job type on their exposure to MWFs and (c) examine the effects of factors, such as type of machineries, temperature and air velocity, on the emission of MWFs.

2. MATERIALS AND METHODS

This cross-sectional study was performed in a car manufacturing factory. It took place in metal-working workshops (called Terimery and Danobat) producing cylinders and cylinder heads, which are parts of car engines. These workshops use a large amount of water-soluble MWFs, which contain water, emulsifiers, biocides, mineral oils, etc. Workers’ exposure to MWFs was evaluated with the National Institute for Occupational Safety and Health (NIOSH) 5524 method [23].

Following a pre-test, and considering the obtained means and SDs, and statistical methods, 75 subjects were randomly selected for the study out of 300 workers: 119 from the Terimery workshop producing cylinders, 99 from the one producing cylinder heads, and 82 from the Danobat workshop producing cylinders and cylinder heads.

To sample total (inhalable) mists, 37-mm Teflon filters with 2-μ pore size (made by SKC, UK), two-piece 37-mm closed-face holders, personal sampling pumps (model 224-PCXR 3, SKC) calibrated with an automatic calibrator were used. To sample thoracic mists, a nylon personal cyclone was also used in addition to the aforementioned equipment. This tool segregates thoracic mist from total mist. The concentration of thoracic mist was calculated with Equations 1–2. The results of the pre-test showed that contaminant concentrations were nearly the same during the whole shift. Sampling duration was established at 3–4 h.

For personal sampling, a sampling train was attached to the subjects. After sampling, the filters were transferred to a laboratory. They were put in desiccators for 2 h, then in a balance room for 1 h. After that, they were weighed with a Sartrische 22D scale (Germany, 0.0001 precision).

In the next step, MWF was extracted with a triple solution (toluene, methanol and dichloromethane with 1:1:1 voluminal proportion) and a double solution (deionized water and methanol with 1:1 voluminal proportion). After drying the filters under laboratory hoods for 2 h, they were weighed. Then, exposure to MWFs and suspended particles was calculated with the equations of the NIOSH 5524 method:

\[
C_T = \frac{(W_2 - W_1) - (B_2 - B_1)}{V} \times 1000, \quad (1)
\]

\[
C_{MWF} = \frac{(W_2 - W_1) - (B_2 - B_1)}{V} \times 1000, \quad (2)
\]

where \(W_1, W_2\) = weight of filter, before and after sampling, respectively, mg; \(W_3\) = weight of filter after extraction, mg; \(B_1, B_2\) = weight of control filter, before and after sampling, respectively, mg; \(B_3\) = weight of control filter after extraction, mg; \(C_T\) = concentration of suspended particulates, mg/m\(^3\); \(C_{MWF}\) = concentration of MWF mists, mg/m\(^3\); \(V\) = volume of sampled air, L.

A thermal anemometer model TA4 (Korea) was used to measure air temperature and velocity.

Statistical analysis of the data was done with SPSS version 11; \(t\) test (when the sample size
seemed low, Mann–Whitney nonparametric test), analysis of variance (ANOVA), regression and Pearson correlation coefficient were used to analyse data.

3. RESULTS

Figure 1 compares the level of workers’ exposure to suspended particulates and MWF mists. It shows that ~80% of exposure involved MWF mists.

Results of workers’ exposure (based on Scheffe’s test) showed that workers in the Terimery workshop producing cylinder heads had different exposure to inhalable and thoracic MWF mists compared to those in the Danobat workshop ($p < .05$). Workers in the Danobat workshop and workers in the Terimery workshop producing cylinders had similar exposure to inhalable and thoracic MWF mists ($p > .05$), as did workers in the workshops producing trimmer cylinders and trimmer cylinder heads ($p > .05$).

Figure 2 shows that exposure to MWF mists was lowest in the Danobat workshop and highest in the Terimery workshop producing cylinder heads.

Table 1 shows that workers’ exposure to inhalable and thoracic MWF mists was similar in spring and summer ($p > .05$). Results of the nonparametric Mann–Whitney test confirmed the t-test results.

![Figure 1. Exposure to metalworking fluid (MWF) mists and to suspended particles. Notes. $C_{MWF} =$ concentration of MWF mists.](image1)

![Figure 2. Exposure to metalworking fluid (MWF) mists by workshop. Notes. $C_{MWF} =$ concentration of MWF mists; Danobat = workshop producing Danobat cylinders and cylinder heads; trimmer cylinder head = workshop producing trimmer cylinder heads; trimmer cylinder = workshop producing trimmer cylinder workshop producing trimmer cylinder.](image2)
Table 2 shows that workers’ exposure to inhalable and thoracic MWF mists was similar in different jobs \((p > .05)\). Results of the nonparametric Mann–Whitney test confirmed the \(t\)-test results.

The correlation test between exposure to inhalable and thoracic MWF mists and temperature showed a significant relation between them \((r_1 = .572, r_2 = .660)\), but air velocity did not have a significant effect on exposure to inhalable mists \((r_1 = .283, p > .05)\), whereas it had a significant effect on exposure to thoracic MWF mists \((r_2 = .373, p < .05)\). Table 3 and Figures 3–4 show the respective results.

Table 1. Exposure to Metalworking Fluid (MWF) Mists (mg/m\(^3\)) by Season, \(M (SD)\)

<table>
<thead>
<tr>
<th>MWF Mists</th>
<th>Spring</th>
<th>Summer</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalable</td>
<td>2.24 (0.88)(^a)</td>
<td>2.15 (1.38)(^b)</td>
<td>.820</td>
</tr>
<tr>
<td>Thoracic</td>
<td>1.12 (0.02)(^c)</td>
<td>1.40 (0.83)(^d)</td>
<td>.152</td>
</tr>
</tbody>
</table>

Notes. \(N\) = number of samples; \(a = N = 16, b = N = 22, c = N = 17, d = N = 20\).

Table 2. Exposure to Metalworking Fluid (MWF) Mists (mg/m\(^3\)) by Job, \(M (SD)\)

<table>
<thead>
<tr>
<th>MWF Mists</th>
<th>Workers</th>
<th>Supervisors</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalable</td>
<td>2.19 (1.20)(^a)</td>
<td>2.10 (1.23)(^b)</td>
<td>.970</td>
</tr>
<tr>
<td>Thoracic</td>
<td>1.31 (0.67)(^c)</td>
<td>1.08 (0.33)(^d)</td>
<td>.410</td>
</tr>
</tbody>
</table>

Notes. \(N\) = number of samples; \(a = N = 3, b = N = 35, c = N = 6, d = N = 31\).

Table 3. Correlation Between Exposure to Metalworking Fluid (MWF) Mists (Dependent Variables) and Temperature and Air Velocity (Independent Variables)

<table>
<thead>
<tr>
<th>MWF Mists</th>
<th>Air Velocity</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalable</td>
<td>(r = .283)</td>
<td>(p = .085)</td>
</tr>
<tr>
<td></td>
<td>(< .001)</td>
<td>(< .001)</td>
</tr>
<tr>
<td>Thoracic</td>
<td>(r = .373)</td>
<td>(p = .023)</td>
</tr>
</tbody>
</table>

Notes. \(r =\) Pearson correlation coefficient; \(N =\) number of samples.

![Figure 3](image.png)

Figure 3. Temperature \((T)\) and exposure to (a) inhalable and (b) thoracic metalworking fluid (MWF) mists. **Notes.** \(C_{MWF}\) = concentration of MWF mists; \(x = T, y = C_{MWF}\).
The results showed that workers’ exposure to inhalable and thoracic MWF mists was 2.20 and 1.26 mg/m3, respectively, which was under the 5-mg/m3 8-h time weighted average. However, workers’ exposure exceeded the recommended values of 0.5 and 0.4 mg/m3 for inhalable and thoracic mists, respectively. The measured concentrations were higher than those found by Simpson (<1 mg/m3) [24] and Reh, Harney, McCleery, et al. (<1 mg/m3) [25]. Fallah Vadeghani found similar results in a study on exposure to MWF mists in a polishing factory [26]. According to Park, Stewart and Coble, by 1999, exposure to this pollutant decreased to ~0.50 mg/m3, i.e., under the mean exposure in the present study [27].

Exposure to MWFs was lowest in the Danobat workshop (1.46 and 0.82 mg/m3 for inhalable and thoracic mists, respectively), and highest in the workshop producing cylinder heads (2.93 and 1.59 mg/m3 for inhalable and thoracic mists, respectively). Automation of the process and doing similar work for a shorter time (thus using less MWFs), as well as enclosing the process and installing a local ventilation system, are among the effective factors resulting in an almost twofold reduction in MWF mist dispersion and exposure in the Danobat workshop compared to the Terimery workshop producing cylinder heads (~0.77 and 0.82 mg/m3 for inhalable and thoracic mists,

Figure 4. Air velocity (V) and exposure to (a) inhalable and (b) thoracic metalworking fluid (MWF) mists. Notes. $C_{\text{MWF}} = \text{concentration of MWF mists}; x = V, y = C_{\text{MWF}}$.

4. DISCUSSION

Exposure to MWFs was lowest in the Danobat workshop (1.46 and 0.82 mg/m3 for inhalable and thoracic mists, respectively), and highest in the workshop producing cylinder heads (2.93 and 1.59 mg/m3 for inhalable and thoracic mists, respectively). Automation of the process and doing similar work for a shorter time (thus using less MWFs), as well as enclosing the process and installing a local ventilation system, are among the effective factors resulting in an almost twofold reduction in MWF mist dispersion and exposure in the Danobat workshop compared to the Terimery workshop producing cylinder heads (~0.77 and 0.82 mg/m3 for inhalable and thoracic mists,
respectively), but higher compared to the Dano-
bat workshop (~1.5 times for inhalable and tho-
racic mists), as a result of a process that was not
enclosed and a different type of ventilation sys-
tem. These findings are similar to those of Pia-
citelli, Sieber, O’Brien, et al. They found that
using ventilation and automated systems, and
enclosing the process, played an important role in
controlling the emission of this pollutant and
reducing workers’ exposure [15].

Piacitelli et al.’s study on workers in a turning
workshop with different jobs found that some
workers had more exposure to MWF mists [15].
But since MWF mists were relatively homogene-
ously dispersed in all working environments of
our study and, as a result, all the workers in vari-
ous jobs had similar exposure to MWF mists, our
results were different from those of Piacitelli et
al.

The results showed that air temperature had an
important effect on the emission of MWF mists
in the working environment ($p < .05$). It seems
that temperature can cause higher evaporation of
the compounds of MWF, and condensation of
vapours due to temperature gradient in other parts
of the workshops can produce mists of the pollut-
ant. The equation of regression line are given by
$C_{\text{MWF}} = -2.8252 + 0.1455 T$ for thoracic mists
and $C_{\text{MWF}} = -4.0245 + 0.2228 T$ for inhalable
mists (where $T =$ temperature, °C); they have the
correlation coefficient of .660 and .572 respec-
tively. The results and the related correlation
coefficients showed that controlling the tempera-
ture in plants at 20–30 °C, could reduce exposure
to MWF mists by 30%–40%.

Air flow in workshops can take mists far away
the hoods of a ventilation system and scatter them
to other parts of the workshops. Therefore, even
though air velocity does not have any significant
effect on workers’ exposure to MWF mists ($p > .05$), but regarding the correlation coefficient
and Figure 4, it is expected that by controlling air
velocity at workshops to under 1 m/min, exposure
to MWF mists can be reduced by 6%–8%. Con-
centrations of thoracic and inhalable MWF mists
can be estimated with the respectively equations:
$C_{\text{MWF}} = 1.078 + 1.3931 V$ (correlation coefficient
of .373) and $C_{\text{MWF}} = 1.8933 + 1.3931 V$ (correla-
tion coefficient of .283), where $V =$ air velocity,
m/min. On the other hand, since workers’ expo-
sure was similar in spring and summer, it is obvi-
ous that despite of the presence of doors, windows
and a ventilation system, the atmospheric condi-
tions of workshops are not considerably influenced
by the outside environment, and this can be
regarded in controlling the atmospheric condition
of workshops to control the level of exposure.

This study showed that ~80% of particle pollu-
tions of metalworking operations of the car-
manufacturing industry were related to MWFs.
So, controlling the emission of MWF mists is
important in reducing the particle pollution of the
workshops. The other 20% of the pollution is
from the other kinds of particles of metalworking
operations, and dust entering through doors and
windows. Some methods, such as ventilation,
enclosing the process, lowering the temperature
in the workshop, etc., can be useful in reducing
the emission of these pollutants into the working
environment and in reducing workers’ exposure
to such pollutants.

REFERENCES

Mist control considerations for the design,
installation, and use of machine tools using
metalworking fluids (Standard No. ANSI
1997.

2. Ball A. A survey of metalworking fluid
mist in manufacturing plants. Lubrication

3. Balmes JR. Surveillance for occupational

4. Bruce RW. CRC handbook of lubrication:

5. Friesen MC, Costello S, Eisen EA.
Quantitative exposure to metalworking
fluids and bladder cancer incidence in a
content/169/12/1471.long.

6. Costello S, Friesen MC, Christiani DC,
Eisen EA. Metalworking fluids and

