The comparison of density-elastic modulus equations for the distal ulna at multiple forearm positions: a finite element study

MARK A.C. NEUERT*, REBECCA L. AUSTMAN, CYNTHIA E. DUNNING
Mechanical and Materials Engineering, University of Western Ontario, London, Canada.

The accuracy of an empirically derived density-modulus equation for bone depends upon the loading conditions and anatomic site of bone specimens used for experimentation. A recent study used FE modeling to compare the ability of three density-modulus relationships to predict strain during bending in neutral forearm rotation in the distal ulna; however, due to the inhomogeneous nature of these FE models, the performance of each equation is not necessarily consistent throughout forearm rotation. This issue is addressed in the present study, which compares the performance of these equations in pronation and supination. Strain gauge data were collected at six discreet locations of six ulna specimens loaded in bending at 40° of pronation and supination. Three FE models of each specimen were made, one for each density-modulus relation, and the strain output compared to the experimental data. The equation previously shown to be most accurate in predicting ulnar strain in neutral forearm rotation was also most accurate in pronation and supination. These results identify this one equation as the most appropriate for future FE analysis of the ulna (including adaptive remodeling, and further show that isotropic and inhomogeneous FE bone models may provide consistent results in different planes of bending.

Key words: finite element analysis, density modulus relationship, biomechanics, ulna, implant, experimental validation

1. Introduction

Finite element (FE) models have shown great utility as a compliment to experimental methods in biomechanics [1]–[3]. Once validated using in vitro methods, a FE model can go on to perform much more insightful analyses, such as predicting changes in bone density over time resulting from stress shielding by prosthetic implants [4]–[8]. These simulations require accurate tissue-level strain estimations as a pre-requisite, and thus rely on accurate assignment of elastic properties.

One approach to defining these properties in bone uses CT data to estimate the spatial distribution of apparent density, which is in turn used to estimate an elastic modulus through an empirical relationship, thus representing the inhomogeneity observed in bone [2], [9], [10]. The accuracy of these relationships depends on the anatomic location of their application [11], [12], as demonstrated by Austman et al., who showed that a density-modulus relation created specifically for the ulna using in vitro data more accurately predicted strain values in a FE model of the ulna compared with relations derived from data collected at other anatomic locations.

The ulna-specific equation created by Austman et al. was one step towards a broader goal of developing a bone-remodeling simulation of the distal ulna; however, it was limited in that it only incorporated bending in neutral forearm rotation in its development. The inhomogeneity of bone makes it possible to have different bulk stiffness characteristics in different loading orientations, and a more thorough validation would take this into account. Furthermore, the bone-remodeling analyses in which the relation is to be employed in-
corporate loading in multiple orientations to represent the loading spectrum experienced in activities of daily life [13]–[15].

Thus, the purpose of this study is to extend the validation of the ulna-specific equation developed by Austman et al. [16] to ensure that estimated strain values correlate with those induced experimentally through a range of forearm rotation.

2. Materials and methods

2.1. Experimental testing

Six fresh-frozen right ulnae (mean age = 66 ± 8 years; 5 male, 1 female) were cleaned of all soft tissue, thawed, and fixed proximally into a custom jig. Six pairs of uniaxial strain gauges were applied to medial and lateral surfaces of the bone (Fig. 1), and integrated into a Wheatstone half-bridge configuration. The jig was then placed in a materials testing machine (Instron 8872, Canton, MA, USA). Strain data were recorded while a 20 N load was applied to the distal articular surface of the ulnar head. The load application point was varied by rotating the jig relative to the actuator in 40° of pronation or supination (Fig. 1).

![Fig. 1. (A) Experimental setup and (B) strain gauge locations and loading directions (only lateral gauges shown; P = pronation, N = neutral, S = supination). Strain gauge 1 corresponds to the interface between diaphysis and epiphysis (distal ulnar head), corresponding to the resection plane used in distal ulnar arthroplasty.](image)

2.2. Finite element modelling

Each ulna was scanned using a micro-CT scanner with isotropic 152 µm voxel spacing (eXplore Ultra, GE Healthcare, London, Canada). Surface geometry was extracted using Mimics (Materialise, Leuven, Belgium) and imported into the FE software Abaqus (Simulia, Providence, RI, USA) where a 3-D model was created, and subsequently meshed using second-order tetrahedral elements of characteristic length 0.75 mm.

A program developed in-house used CT data to assign a density value to each element of the model meshes. The program worked by first assigning each voxel a density value based on a comparison of its Hounsfield value with that of a calibration phantom of a known density included in the scan (to correct for edge effects, any voxel with a volume only partially inside the bone’s CT-based outer boundary were excluded.) Then an elastic modulus was calculated for each voxel using one of three density-modulus equations, chosen on their proven ability to predict strain values in the ulna [17].

\[
E = 8346 \rho_{\text{app}}^{1.5} \quad \text{(Austman et al. [16])},
\]

\[
E = 2875 \rho_{\text{app}}^{3} \quad \text{(Carter and Hayes [19])},
\]

\[
E = 8920 \rho_{\text{app}}^{1.83} \quad \text{(Morgan et al. [12])}.
\]

An elastic modulus was then assigned to each mesh element by averaging the modulus values calculated for each voxel contained within that element’s volume.

Modeling the experimental set-up, a 20 N force was applied to the articular surface of each model at 40° of pronation and supination (Fig. 1).

In summary, FE models of six ulna specimens were loaded in two orientations using three density-modulus relations, totaling 36 finite element models. The mesh elements corresponding to the strain gauge locations were identified for all models, and the surface strain predicted at these locations were compared to their corresponding experimental readings.

2.3. Statistical analysis

Two-way repeated measures (RM) ANOVAs with main factors of strain gauge location (site 1–6) and density modulus equation were used to compare model and experimental strain output values across all gauge locations, with Student–Newman–Keuls tests for post-hoc analyses (α = 0.05). Root-mean-squared errors (RMSE) across all gauge locations were calculated for each specimen as a measure of error magnitude. Intraclass correlation coefficients (ICCs) were calculated to examine the correlation between experimental and predicted strain. In addition, Bland–Altman plots (a more appropriate method for assessing the degree of agreement between two measurement
methods than a simple correlation [18]) were constructed to detect any biases or systemic errors.

3. Results

The two-way RM ANOVA showed an interaction between gauge location and density-modulus equation used ($p < 0.05$) in both pronation and supination. Therefore, separate one-way RM ANOVAs were performed comparing strain results at each gauge location (Table 1).

At all gauge locations in both pronation and supination, Equation (1) was not found to significantly differ from the experimental strain values ($p > 0.05$). Equation (3) performed well at the distal gauges with $p > 0.05$ at gauge 1 in pronation and gauges 1 and 2 in supination. Equation (2) performed well at gauge 4 in pronation and gauges 4 and 5 in supination ($p > 0.05$).

The RMSE of strain predicted by each equation for each individual specimen is presented in Table 2. In pronation, Equation (1) displayed the lowest RMSE in five of the six specimens, with the sixth specimen being best represented by Equation (2). In supination, Equation (1) had the lowest RMSE values in three specimens, Equation (3) in two specimens, and Equation (2) in one specimen. Averaged across all specimens, Equation (1) had the lowest RMSE in both pronation (26.6 με) and in supination (34.1 με).

Bland–Altman plots between experimental and predicted strain were constructed for each equation.
The mean difference and limits of agreement for each plot are displayed in Table 3. In both pronation and supination, Equation (2) tended to overestimate, and Equation (3) underestimate, experimental strain values. Equation (1) displayed the smallest bias error, and the tightest limits of agreement, with a slight tendency to overestimate strain in supination only.

Regarding ICC values (Table 4), Equation (1) calculated strains that correlated best with experimental values and had the narrowest 95% confidence interval in pronation and supination.
4. Discussion

Past studies have shown that bending load orientation influences the accuracy of isotropic, inhomogeneous FE bone models created using a density-modulus equation. One such equation developed from in vitro ulnar strain data by Austman et al. [16] has proven more accurate than those developed using data from other anatomic locations (Carter and Hayes [19] and Morgan et al. [12]) in its ability to predict ulnar strain; however, these tests were conducted in neutral forearm rotation only. The present study expanded upon this previous work by extending the validation procedure to include 40° of pronation and supination, thus representing the ulna’s range of motion.

According to the RM ANOVAs, only the strain results acquired using Equation (1) (Austman et al. [16]) did not significantly differ from experimental values at any gauge location. Furthermore, Equation (1) displayed the lowest overall RMSE and highest ICC values with the narrowest 95% confidence interval. The Bland–Altman plots showed that Equation (1) had the smallest bias error and limits of agreement in pronation and supination.

These results compare well with those of Austman et al. [16], who reported RMSE, ICC values, mean differences and limits of agreement of 29.21 με, 0.94 (lower bound 0.80, upper bound 0.97), 19.0 με and ±27.7 με, respectively, using the same experimental setup in neutral forearm rotation. Furthermore, strain values acquired in the present study follow trends similar as in Austman et al. [16]; specifically that Equation (2) (Carter and Hayes [19]) tended to overestimate, and Equation (3) (Morgan et al. [12]), underestimate, strain values; and furthermore, that Equation (3) showed smaller error values at gauges placed closest to the epiphysis (distally at gauges 1 and 2), while Equation (2) performed best at gauges completely in the diaphysis (gauges 5 and 6). This consistency for all three equations suggests that strain output of an isotropic, inhomogeneous model undergoing longitudinal bending is independent of bending orientation for the ulna.

A major limitation of this study is the use of uniaxial strain gauges, as strain gauge rosettes would have allowed for comparisons of principal shear strain values and directions; however, to use rosettes at six locations would require recording of 18 channels, which could not be done simultaneously using the available data acquisition capabilities. The decision to use uniaxial gauges was based on a desire to simultane-
References

The comparison of density-elastic modulus equations for the distal ulna at multiple forearm positions...

[31] STÜLPNER M.A., REDDY B.D., STARKE G.R., SPIRakis A.,
A three-dimensional finite analysis of adaptive remodelling

[32] TURNER A.W.L., GILLIES R.M., SEKEL R., MORRIS P., BRUCE W., WALSH W.R., Computational bone remodelling simula-

[33] BITSAKOS C., KERNER J., FISHER I., AMIS A.A., The effect of
muscle loading on the simulation of bone remodelling in the