NUMERICAL MODELLING OF A SUPERCONDUCTING COIL WINDING PROCESS WITH RUTHERFORD TYPE Nb$_3$Sn CABLE

Key words: winding process, Rutherford cable, multibody FEA simulation, superconducting magnets.

Abstract: The upgrade of the Large Hadron Collider at CERN requires a new generation of superconducting magnets. In order to obtain very high magnetic fields, Nb$_3$Sn superconductors will be used. The use of this material brings new challenges to the production process of accelerator magnets for High Energy Physics application. The prototype windings of a large aperture quadrupole (MQXF) and high field two-in-one dipole (11 T) coils were performed in the Large Magnet Facility at CERN. A study was launched in order to identify the origin of mechanical cable winding instabilities and to develop a method for further improving winding parameters. This paper focuses on a theoretical analysis of the coil winding process with use of Finite Element Method.

Introduction

The Large Hadron Collider (LHC) built by the European Organization for Nuclear Research (CERN) has been operational since 2008. In the scope of the High Luminosity (HL) upgrade of the LHC and the next generation Future Circular Collider (FCC) study, new magnet production technologies are developed. The upcoming improvement requires the use of the Nb$_3$Sn superconductor, not yet present in any High Energy Physics (HEP) application [1]. The low-beta quadrupole (MQXF) [2] and high field two-in-one dipole (11 T) [3] magnets are designed with use of the Nb$_3$Sn, Rutherford type cable. The main challenge with use of the Nb$_3$Sn compound is its brittleness. Low intrinsic strain may cause permanent performance degradation [4]. The wind-and-react technique was developed in order to address this issue. The coil is wound with a cable in which the Nb$_3$Sn precursor elements are present in a common Cu matrix. The Nb$_3$Sn is formed in the reaction heat treatment in 650 °C when the coil is in its final shape [5]. Thanks to this technique, the winding process is performed using a ductile material. In order to withstand the high temperature during reaction, S-2 glass and mica is used as the cable insulation [6].
The superconducting strands are manufactured based on the Restacked-Rod process (RRP®). The strands (Fig. 2a) are cabled into the 40-strand cable (Fig. 2b).

The cable is afterwards braided with S-2 glass insulation sleeve and C-shape mica foil, shown in the Fig. 3b. The wound coil is subjected to the reaction and impregnation processes (Fig. 2c). Fig. 2d shows the two-coil assembly in the dipole configuration. The prototype coil winding was performed in the Large Magnet Facility (LMF) at CERN with the use of an insulated and an uninsulated Nb,Sn cable. The cable mechanical instabilities, like strand pop-out, protrusions, or openings, were observed [7]. In most cases, the instabilities occur at the extremities (pole-ends) of a coil. The strand pop-outs are visible in Fig. 3a as a discontinuity on the cable surface. The protrusion from the mandrel surface is shown in Fig. 3b.

In order to obtain a high and repeatable quality of the coil winding, it was crucial to identify and study the phenomena driving the cable mechanical instability by measurements and the numerical simulations. One can see that the wound cable is bent in 3-axes in order to obtain a coil shape shown in Fig. 3. The winding simulation with a Rutherford cable is simplified to 1-axis bending, with the use of a cylindrical support shown in Fig. 8. This allows for a less complex simulation setup that may be compared with the experimental results [7]. In order to investigate a relative displacement of a strand in the cable matrix, the cable is modelled with separate strand bodies. The literature describes two, three-dimensional, “hierarchical models” of the Rutherford cable, used in mechanical analysis [8] and [9], which are intended for a mechanical calculation of a filament degradation due to the applied stress. The winding simulation shown in this paper consists of a 10 mm diameter cylinder and a 20 mm-long cable. The model geometry is defined in a CAD system, allowing for an accurate mesh control.

1. Winding simulation

The support pole used in the 11 T dipole is machined from the titanium alloy, whereas the outer surface of the cable is made of copper. Due the high material stiffness difference, the cylinder is simulated as a rigid body. The plastic deformation is introduced in order to avoid the artificially high stress in the cable. The Nb,Sn strand’s material parameters are defined by the multilinear isotropic hardening property derived from the single strand tensile test performed at CERN. The result and the FEA input data is shown in Fig. 4. The elastic behaviour is described with the Young’s modulus value of 90 GPa, and the used Poisson’s Ratio is 0.34.
Fig. 4. Tensile test results of an Nb$_3$Sn 132/169 0.7 mm strand. $E = 90$ GPa, $\nu = 0.34$

In order to analyse the geometry of the Nb$_3$Sn cable, a Computed Tomography (CT) of the cable stack was performed. The tomogram on the left side of Fig. 5 shows the cable stack and the transversal cross sections. One can see the plastic deformation of the initially round strands in the enlarged edges of the cable, which is caused by the cabling process [10]. The simulated strand is simplified to a round cross section, with no keystone angle. The Rutherford cable contains a stainless steel shim, which is introduced in order to increase the interstrand contact resistance [1]. The shim is a flat foil of 0.15 mm thickness. The extracted stainless steel shim visible in Fig. 2b shows multiple imprints introduced during the cabling process. The shim is considered giving negligible rigidity to the cable; therefore, it is not taken into account in the presented model.

The S-2 glass sleeve and mica C-shape foil are the outermost layers of the cable. The S-2 glass insulation is braided on the cable with a constant feed of the mica foil. The cable is tightly enclosed, which provides a mechanical support to the cable. In order to avoid the additional constraint, the insulation layers are not included in the simulated cable geometry. The geometrical simplifications of the presented model are shown in Table 1. The simulated cable geometry is presented on the right side of Fig. 5, consisting of 10 strands of 0.7 mm diameter.

Table 1. Geometrical simplifications of the simulation

<table>
<thead>
<tr>
<th>Body</th>
<th>Feature</th>
<th>Simplification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable</td>
<td>Wire deformation</td>
<td>Not considered</td>
</tr>
<tr>
<td></td>
<td>Keystone angle</td>
<td>Not considered</td>
</tr>
<tr>
<td></td>
<td>Stainless steel shim</td>
<td>Not considered</td>
</tr>
<tr>
<td></td>
<td>S-2 Glass and Mica insulation</td>
<td>Not considered</td>
</tr>
<tr>
<td></td>
<td>40 strands</td>
<td>10 strands</td>
</tr>
<tr>
<td>Cylinder</td>
<td>3-axis bending</td>
<td>1-axis bending</td>
</tr>
</tbody>
</table>

The strand body is defined with a guide curve positioned in the centre of each strand, shown in Fig. 6. The minimal repeatable period of the cable is a turn of the strand p. Its value is related with a pitch angle φ and strand diameter d with the following equation:

$$p = \frac{d}{\sin(\varphi)}$$ \hspace{1cm} (1)

In order to obtain the length of the cable l containing the full period of each strand (pitch length), the quantity of strands n needs to be equal to the quantity of a cable turns p, which is described by equation (2).

$$l = n \times p$$ \hspace{1cm} (2)

Fig. 6. Side view of the 10-Strand Rutherford cable guide curves and one strand geometry

In order to wind the 11 T dipole, it is necessary to introduce a three-axes bending to the superconductor, as shown in Fig. 3 and the left side of Fig. 8. The winding complexity is reduced to the 1-axis bending. The modelled cable is bent on the cylinder surface (right side of Fig. 8), which introduces the bending momentum in the Z-axis (Fig. 7).

Fig. 7. Rutherford cable. Left: Bending $\vec{M} = \theta$. Right: Bending momentum in Z-axis
The winding model setup is shown in Fig. 9. The cable overall length is 25.4 mm, which presents 10 minimal periods. This configuration gives a geometry with a full period of each strand. The winding force F is defined in order to induce a turning movement of the cable around a fixed cylinder surface. The force vector has a constant value of 200 N and acts on all 10 faces of cable side B. The angle α between the force F and Y-axis is changing in the course of the simulation from 0° to 180°.

The boundary conditions of the model are shown in Table 2. The modelled cylinder is a rigid body fixed in 6 DOF. The strands are fixed on the side A in 6 DOF. On the side B, strands are constrained in 3 DOF, i.e. Z-translation, X-rotation, and Y-rotation. The cable boundary condition is defined with a rigid behaviour in order to eliminate the side face deformation.

The contact parameters of the model are presented in Table 3. The contact interfaces are defined with use of the three-dimensional 8-node contact elements, shown in Fig. 10. These elements feature the quadratic shape function, which allows for a good curved surface adjacency in the application with a coarse mesh. These elements improve the initial contact conditions by minimizing the gap and the penetration size. The friction coefficient is 0.2, which will be subject of further study. An interface between the cable faces and the cylinder is configured asymmetric, allowing for a more efficient contact analysis due to the contact force projection on the strand.

Table 2. Boundary conditions

<table>
<thead>
<tr>
<th>Body</th>
<th>Geometry</th>
<th>Support</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand</td>
<td>Face side A</td>
<td>Fixed 6 DOF</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Face side B</td>
<td>Fixed 3 DOF</td>
<td>Force (200N/10)</td>
</tr>
<tr>
<td>Cylinder</td>
<td>Whole body</td>
<td>Fixed 6 DOF</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3. Contact definition

<table>
<thead>
<tr>
<th>Interface</th>
<th>Strand to strand</th>
<th>Strand to cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Frictional</td>
<td>Frictional</td>
</tr>
<tr>
<td>Contact element</td>
<td>3D 8-node</td>
<td>3D 8-node</td>
</tr>
<tr>
<td>Formulation</td>
<td>Augmented Lagrange</td>
<td>Augmented Lagrange</td>
</tr>
<tr>
<td>Friction coefficient</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Behaviour</td>
<td>Symmetric</td>
<td>Asymmetric</td>
</tr>
</tbody>
</table>

The cable is meshed by dividing the strand geometry along the guide curve, resulting in a good mesh quality ratio, as shown in Fig. 11. The obtained longitudinal sections are divided further with use of the edge-sizing feature.
The model was discretized with use of 20-node 3-D solid quadratic elements presented in Fig. 12. These elements allow for a good representation of a complex surface geometry.

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

Fig. 12. 3-D 20-node quadratic solid element [11]

2. Winding simulation results and interpretation

The model deformation is shown in five steps in Fig. 13. The simulated cable geometry is characterized by the following parameters: the pitch angle $\varphi = 16^\circ$, strand diameter $d = 0.7$ mm, and the turn distance $p = 2.54$ mm.

The equivalent total strain of a final step of a simulation is presented in Fig. 14. One can see the highest strain concentration of approximately 9% close to the edges of the cable.

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

Fig. 13. Winding simulation in five steps. The result of the directional deformation in X-axis (mm)

The equivalent total strain of a final step of a simulation is presented in Fig. 14. One can see the highest strain concentration of approximately 9% close to the edges of the cable.

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

Fig. 14. Winding simulation result, Equivalent Total Strain (mm/mm)

The equivalent total strain of a final step of a simulation is presented in Fig. 14. One can see the highest strain concentration of approximately 9% close to the edges of the cable.

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

The results presented in Fig. 15 and Fig. 16 lack the information of the cable position in which the deformation occurs. This is crucial when considering the comparison with the experimental results [7]. It was essential to develop an algorithm in order to extract the results in a function of an initial cable position.

Fig. 15. The directional displacement in Z-axis with marked protrusion (mm)

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

Fig. 16. Distance from the cylinder centre (mm). Strand pop-out result

The equivalent total strain of a final step of a simulation is presented in Fig. 14. One can see the highest strain concentration of approximately 9% close to the edges of the cable.

The equivalent total strain of a final step of a simulation is presented in Fig. 14. One can see the highest strain concentration of approximately 9% close to the edges of the cable.

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

The directional deformation in the Z-axis is shown in Fig. 15. One can see the strands in the central area of the cable protrude downwards in the Z-axis direction. The maximal absolute value of the cable protrusion is 0.61 mm, which is 87% of the strand diameter.

4. Result analysis algorithm

The results in Fig. 17 show the position of the strands, represented by the guide curves. Each strand is represented by the function of the initial position and the displacement of an associated finite element. Such a data presentation allows one to distinguish strands easily.

Fig. 17. Winding simulation result, Equivalent Total Strain (mm/mm)
The average, maximal, and minimal directional displacement in X, Y, and Z-axes are shown in Fig. 18. One can see the protrusion phenomena as the displacement in the Z-axis. The maximal protrusion value equals 0.6 mm, which is 86% of a strand diameter occurring in 16.8 mm of the initial cable length.

The strand pop-out instability is a local cable thickness alteration. The cable thickness is computed as a normal deviation from the winding path, which is shown in Fig. 19a as a dashed line.

The results in Fig. 19b show the cable thickness, maximum and minimum normal deviation of the cable from the winding path as a function of the cable length. One can see a marked minimal and maximal cable thickness at 16 mm and 21.4 mm of the winding path. The absolute difference equals 0.36 mm, which is 51% of a strand diameter.

Discussion and conclusion

The mechanical instability of a superconductor during winding is a present challenge in the magnet production process. The protrusion and the strand pop-out instabilities are observed during the prototype winding of 11 T and MQXF coils. It became important to study the winding process in a simulation environment in order to investigate the mechanical instabilities.

The FEA model of the winding process is presented. The material definition, the geometrical simplifications, and the boundary conditions are presented and discussed. The challenges of post-processing are addressed by the
guide curve analysis algorithm, which allows displaying the indicators of the protrusion and the strand pop-out as a function of the cable length.

The presented model and analysis method allows simulating the winding process, while paying special attention to the instabilities. Although the initial results are encouraging, the model requires further development aiming to increase the amount of strands and maintaining the simulation convergence time. This may be achieved by defining coarse mesh or simplifying boundary conditions.

References