PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 91, nr 1 | 12--17
Tytuł artykułu

The effect of thermal processing parameters on the mechanical properties of aluminium alloy foam

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this study was to investigate the influence of three thermal processing parameter called stress relieving on mechanical properties of the aluminium alloy foam. Design/methodology/approach: The samples were undergone by stress relieving method using vacuum furnace. Hardness measurement was carried out using microhardness Vickers at 150 mN load and 15 s loading time. Compressive strength, plateau stress and energy absorption were calculated using a universal testing machine. Findings: It was found that the highest value of hardness of 192.78 Hv was obtained when the stress relieving process is set with the following parameters: heating (500°C); holding time (120 min) and stabilization temperature (450°C). Since higher heating temperature and longer holding time produce sample with larger grain size and has an adverse effect on the hardness value It was revealed that the mechanical properties of aluminium alloy foam were enhanced when the heating temperature was decreased, holding temperature was diminished and the stabilization temperature was increased. Overall, the presented results showed that the thermal processing parameters such as heating temperature, holding time and stabilization temperature have a significant influence on improving the mechanical properties of aluminium alloy foam. Research limitations/implications: The properties of closed-cell aluminium alloy foam are highly sensitive and depend on the post heat treatment process. The processing parameters should be controlled in order to manipulate the properties of closed-cell aluminium alloy foam. Originality/value: To investigate the influences of these processing parameters on the physical and mechanical properties of the closed-cell aluminium alloy foam.
Wydawca

Rocznik
Strony
12--17
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
autor
  • Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • Mechanical Engineering Department, Universitas Negeri Malang, Malang, East Java, Indonesia
autor
  • Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia , mazli.mustapha@utp.edu.my
Bibliografia
  • [1] M. Taherishargh, I.V. Belova, G.E. Murch, T. Fiedler, On the mechanical properties of heat-treated expanded perlite-aluminium syntactic foam, Materials & Design 63 (2014) 375-383, https://doi.org/10.1016/j.matdes.2014.06.019.
  • [2] A. Güner, M. Arıkan, M. Nebioglu, New Approaches to Aluminum Integral Foam Production with Casting Methods, Metals (Basel) 5/3 (2015) 1553-1565, DOI: 10.3390/met5031553.
  • [3] H. Bayani, S.M.H. Mirbagheri, Strain-hardening during compression of closed-cell Al./Si/SiC+ (TiB2 & Mg) foam, Materials Characterization 113 (2016) 168-179, DOI: https://doi.org/10.1016/j.matchar.2016.01.017.
  • [4] D.K. Rajak, L.A. Kumaraswamidhas, S. Das, S. Senthil Kumaran, Characterization and analysis of compression load behavior of aluminum alloy foam under the diverse strain rate, Journal of Alloys and Compounds 656 (2016) 218-225, DOI: https://doi.org/10.1016/j.jallcom.2015.09.255.
  • [5] T.G. Nieh, K. Higashi, J. Wadsworth, Effect of cell morphology on the compressive properties of open-cell aluminum foams, Materials Science and Engineering A 283/1-2 (2000) 105-110, DOI: https://doi.org/10.1016/S0921-5093(00)00623-7.
  • [6] V.K. Jeenager, V. Pancholi, B.S.S. Daniel, The Effect of Aging on Energy Absorption Capability of Closed Cell Aluminum Foam, Advanced Materials Research 585 (2012) 327-331, DOI: https://doi.org/10.4028/www.scientific.net/AMR.585.327.
  • [7] D. Lehmhus, J. Banhart, Properties of heat-treated aluminum foams, Materials Science and Engineering A 349/1-2 (2003) 98-110, DOI: https://doi.org/10.1016/S0921-5093(02)00582-8.
  • [8] Y. Feng, N. Tao, Z. Zhu, S. Hu, Y. Pan, Effect of aging treatment on the quasi-static and dynamic compressive properties of aluminum alloy foams, Materials Letters 57/24-25 (2003) 4058-4063, DOI: https://doi.org/10.1016/S0167-577X(03)00265-9.
  • [9] F. Campana, D. Pilone, Effect of heat treatments on the mechanical behavior of aluminum alloy foams, Scripta Materialia 60/8 (2009) 679-682, DOI: https://doi.org/10.1016/j.scriptamat.2008.12.045.
  • [10] P.R. Onck, R. van Merkerk, A. Raaijmakers, J.T.M. De Hosson, Fracture of open- and closed-cell metal foams, Journal of Materials Science 40/22 (2005) 5821-5828, DOI: https://doi.org/10.1007/s10853-005-4996-7.
  • [11] H. Kuhn, D. Medlin (Eds.) ASM International. Handbook Committee, ASM Handbook. Volume 8: Mechanical Testing and Evaluation, Metals Park, Ohio, ASM International, 2000.
  • [12] X. Xia, H. Feng, X. Zhang, W. Zhao, The compressive properties of closed-cell aluminum foams with different Mn additions, Materials & Design 51 (2013) 797-802, DOI: https://doi.org/10.1016/j.matdes.2013.05.008.
  • [13] V.K. Jeenager, V. Pancholi, Influence of cell wall microstructure on the energy absorption capability of aluminum foam, Materials & Design 56 (2014) 454-459, DOI: https://doi.org/10.1016/j.matdes.2013.08.109.
  • [14] H.P. Degischer, B. Kriszt (Eds.) Handbook of Cellular Metals: Production, Processing, Application, Weinheim, Wiley-VCH, 2002.
  • [15] I.W. Hall, M. Guden, C.-J. Yu, Crushing of aluminum closed cell foams: density and strain rate effects, Scripta Materialia 43/6 (2000) 515-521, DOI: https://doi.org/10.1016/S1359-6462(00)00460-7.
  • [16] W.D. Callister Jr., D.G. Rethwisch, Materials Science and Engineering, John Wiley & Sons, Inc, 2010.
  • [17] M.J. Jones, F.J. Humphreys, Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behavior of deformed aluminum, Acta Materialia 51/8 (2003) 2149-2159, DOI: https://doi.org/10.1016/S1359-6454(03)00002-8.
  • [18] D. Puspitasari, T.L. Ginta, M. Mustapha, N. Sallih, P. Puspitasari, Statistical optimization of stress relieving parameter on closed cell aluminum foam using central composite design, Archives of Materials Science and Engineering 89/2 (2018) 55-63, DOI: 10.5604/01.3001.0011.7172.
  • [19] O.E. Olorunniwo, P.O. Atanda, K.J. Akinluwade, Effects of Variation of Some Process Variables on Recrystallization Rate of Aluminium Alloy (6063), Journal of Minerals and Materials Characterization and Engineering 8/1 (2009) 1-14, DOI: https://doi.org/10.4236/jmmce.2009.81001.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-4eacf11b-05e4-4e77-a006-71a6b6eb80a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.