Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 14, no. 2 | 418--429
Tytuł artykułu

Explosive Properties of Melt Cast Erythritol Tetranitrate (ETN)

Treść / Zawartość
Warianty tytułu
Języki publikacji
Erythritol tetranitrate (ETN) is a low melting, solid, nitrate ester with significant explosive properties. The increased availability of its precursor (erythritol), which is now used as a sweetener, has attracted attention to the possible misuse of ETN as an improvised explosive. However, ETN also has some potential to be used as a component of military explosives or propellants. This article focuses on the properties of melt-cast ETN. The sensitivity of the compound towards impact and friction was tested. The explosive performance was evaluated, based on cylinder expansion tests and detonation velocity measurements. The impact energy and friction force required for 50% probability of initiation was 3.79 J and 47.7 N, respectively. A Gurney velocity value of G = 2771 m·s−1 and a detonation velocity of 8027 m·s−1 at a charge density of 1.700 g·cm−3, were found for the melt-cast material. The sensitivity characteristics of melt-cast ETN does not differ significantly from either literature values or the authors’ data measured using the crystalline material. The explosive performance properties were found to be close to those of PETN.

Opis fizyczny
Bibliogr. 26 poz.., rys., tab.
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 95, Pardubice, 532 10, Czech Republic,
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 95, Pardubice, 532 10, Czech Republic
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 95, Pardubice, 532 10, Czech Republic
  • Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 95, Pardubice, 532 10, Czech Republic
  • [1] Matyáš, R.; Künzel, M.; Růžička, A.; Knotek, P.; Vodochodský, O. Characterization of Erythritol Tetranitrate Physical Properties. Propellants Explos. Pyrotech. 2015, 40: 185-188.
  • [2] Fedoroff, B. T.; Sheffield, O. E. Encyclopedia of Explosives and Related Items. Vol. 5., Picatinny Arsenal, New Jersey 1972.
  • [3] Naoúm, P. Nitroglycerine and Nitroglycerine Explosives. The Williams & Wilkins Co., Baltimore 1928.
  • [4] Urbański, T. Chemistry and Technology of Explosives. Vol. II., PWN − Polish Scientific Publisher, Warsaw 1965.
  • [5] Moon, H. J.; Jeya, M.; Kim, I. W.; Lee, J. K. Biotechnological Production of Erythritol and Its Applications. Appl. Microbiol. Biotechnol. 2010, 86: 1017-1025.
  • [6] Oxley, J. C.; Smith, J. L.; Brady, J. E.; Brown, A. C. Characterization and Analysis of Tetranitrate Esters. Propellants Explos. Pyrotech. 2012, 37: 24-39.
  • [7] Manner, V. W.; Tappan, B. C.; Scott, B. L.; Preston, D. N.; Brown, G. W. Crystal Structure, Packing Analysis, and Structural-Sensitivity Correlations of Erythritol Tetranitrate. Cryst. Growth Des. 2014, 14: 6154-6160.
  • [8] Matyáš, R.; Lyčka, A.; Jirásko, R.; Jalový, Z.; Maixner, J.; Mišková, L.; Künzel, M. Analytical Characterization of Erythritol Tetranitrate (ETN), an Improvised Explosive. J. Forensic Sci. 2016, 61(3): 759-764.
  • [9] Yan, Q.-L.; Künzel, M.; Zeman, S.; Svoboda, R.; Bartošková, M. The Effect of Molecular Structure on Thermal Stability, Decomposition Kinetics and Reaction Models of Nitric Esters. Thermochim. Acta 2013, 566: 137-148.
  • [10] Künzel, M.; Němec, O.; Matyáš, R. Erythritol Tetranitrate in Ammonium Nitrate Based Explosives. Cent. Eur. J. Energ. Mater. 2013, 10(3): 351-358.
  • [11] Manner, V. W.; Preston, D. N.; Tappan, B. C.; Sander, V. E.; Brown, G. W.; Hartline, E.; Jensen, B. Explosive Performance Properties of Erythritol Tetranitrate (ETN). Propellants Explos. Pyrotech. 2015, 40: 460-462.
  • [12] Bergeim, F. H. Production of Erythritol Tetranitrate. Patent US 1691954, 1928.
  • [13] Matyáš, R.; Šelešovský, J.; Musil, T. Sensitivity to Friction for Primary Explosives. J. Hazard. Mater. 2012, 213-214: 236-241.
  • [14] Šelešovský, J.; Pachman, J. Probit Analysis – a Promising Tool for Evaluation of Explosive’s Sensitivity. Cent. Eur. J. Energ. Mater. 2010, 7(3): 269-277.
  • [15] Strand, T.; Goosman, D. R.; Martinez, C.; Whitworth, T. L.; Kuhlow, W. W.Compact System for High-speed Velocimetry Using Heterodyne Techniques. Rev. Sci. Instrum. 2006, 77: 083108.
  • [16] Pachman, J.; Künzel, M.; Němec, O.; Bland, S. Characterization of Al Plate Acceleration by Low Power Photonic Doppler Velocimetry (PDV). 40th International Pyrotechnics Society Seminar, Colorado Springs, USA 2014.
  • [17] Hornberg, H.; Volk, F. The Cylinder Test in the Context of Physical Detonation Measurement Methods. Propellants Explos. Pyrotech. 1989, 14(5): 119-211.
  • [18] Rumchik, C. G.; Nep, R.; Butler, G. C.; Breaux, B.; Lindsay, C. M. The Miniaturization and Reproducibility of the Cylinder Expansion Test. 17th American Physical Society Shock Compression of Condensed Matter Conference, Chicago, AIP Press. 2011, 450-453.
  • [19] Reaugh, J. E.; Souers, P. C. A Constant-Density Gurney Approach to the Cylinder Test. Propellants Explos. Pyrotech. 2004, 29(2): 124-128.
  • [20] Gurney, R. W. The Initial Velocities of Fragments from Bombs, Shells, Grenades. Report No. 405, Ballistic Research Laboratories, Aberdeen, USA 1943.
  • [21] Prinse, W. C.; Esveld, L.; Oostdam, R.; Roojien, M.; Bouma, R. Fibre-Optical Techniques for Measuring Various Properties of Shock Waves. 23rd International Congress on High-Speed Photography and Photonics, Moscow, Russia 1998.
  • [22] Sućeska, M.; Ang, H. G.; Chan, H. Y. S. Study of the Effect of Covolumes in BKW Equation of State on Detonation Properties of CHNO Explosives. Propellants Explos. Pyrotech. 2010, 35(1): 103-112.
  • [23] Sućeska, M. Explo5 Version 6.03/2016 User’s Guide. OZM Research, Hrochův Týnec, Czech Republic 2016.
  • [24] Musil, T.; Matyáš, R.; Lyčka, A.; Růžička, A. Characterization of 4,6-Diazido-Nnitro-1,3,5-triazine-2-amine. Propellants Explos. Pyrotech. 2012, 37: 275-281.
  • [25] Tomlinson, W. R.; Sheffield, O. E. Engineering Design Handbook. Explosive Series of Properties Explosives of Military Interest, Report AMCP 706-177, US Army: Washington D.C. 1971, pp. 233, 276.
  • [26] Price, D. The Detonation Velocity − Loading Density Relation for Selected Explosives and Mixtures of Explosives. NSWC TR 82-298, Naval Surface Weapons Center, Dahlgren, Virginia, USA 1982.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.