Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 22, No. 4 | 243--252
Tytuł artykułu

Simulation studies of micro air vehicle

Treść / Zawartość
Warianty tytułu
Języki publikacji
In the paper, we presented results of analysis of Micro Air Vehicle MAV stability on high Angle of Attack (AOA) by application continuation methods and bifurcation theory. Moreover, it presented two main tasks accomplished – performance analysis carried out, as well as numerical studies in order to find possible simplifications drive model, suitable for further design and analysis. This paper shows the typical MAV construction and their characteristics. Then presented results of calculations of necessary and required power (for CR3516 motor). The results shown in the Figure. The next step of MAV performance examination was calculations of dynamics stability and controllability of open loop system. Also shown state, and control matrixes for the longitudinal motion. Roots loci and open loop dynamics analysis for longitudinal motion are shown in the Figures. The next shown few function such as transfer function for the input (longitudinal velocity), transfer function for the pitch angular rate q input and for the lateral motion, state, and control matrices, etc. At the end shown results of simulations for dynamic response of MAV flight disturbance is shown in the Figure. The paper concluded short motions.

Opis fizyczny
Bibliogr. 15 poz., rys.
  • Air Force Institute of Technology Ksiecia Boleslawa Street 6, 01-494 Warsaw, Poland tel.: +48 22 6851300, fax: +48 22 6851300,
  • Air Force Institute of Technology Ksiecia Boleslawa Street 6, 01-494 Warsaw, Poland tel.: +48 22 6851300, fax: +48 22 6851300,
  • Air Force Institute of Technology Ksiecia Boleslawa Street 6, 01-494 Warsaw, Poland tel.: +48 22 6851300, fax: +48 22 6851300,
  • [1] Morris, S. J., Design and Flight Test Results for Micronized Fixed-Wing and VTOL Aircraft, Proceedings of the First International Conference on Emerging Technologies for Micro Ai Vehicles, Georgia Institute of Technology, Atlanta, GA, February 1997.
  • [2] Bovais, C., Mackrell, J., Foch, R., Carruthers, S., Dragon Eye UAV Concept to Production, Proceedings of UAVs XVIII International Conference, Bristol, UK, 31 March − 2 April 2003, pp. 3.1-3.12.
  • [3] Grasmeyer, J. M., Keennon, M. T., Development of the Black Widow Micro Air Vehicle, AIAA Paper 2001-0127, January 2001
  • [4] Watkins, S. W., Melbourne Atmospheric Winds: Implications for MAVs, Proceedings of the VIII international UAV Conference, 31 March − 2 April 2003, Bristol, UK.
  • [5] Polhamus, E. C., A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy, NASA Technical Note TN D-3767, December 1966
  • [6] Lamar, J. E., The Use and Characteristics of Vortical Flows Near a Generating Aerodynamic Surface: a Perspective, Prog. Aerospace Sci. Vol. 34, No. 3/4, pp. 167-217, 1998.
  • [7] Galiński, C., Mieloszczyk, J., Results of Gust Resistant MAV Programe, Proceedings of the 28th ICAS Congress, Brisbane, Australia, 24-28 September 201212.
  • [8] Galinski, C., Gust Resistant Fixed Wing Micro Air Vehicle, Journal of Aircraft, AIAA, Vol. 43, No. 5, September-October 2006, pp. 1586-1588.
  • [9] Mieloszczyk, J., Solver Preparation for Reliable Aerodynamic Computations for Micro UAV, International Conference READ 2010, Warsaw, 2010.
  • [10] Shyy, W., Klevenbring, F., Milsson, M., Sloan, J., Carrol, B., Fuentes, C., Rigid and Flexible Low Reynolds Number Airfoils, Journal of Aircraft, Vol. 36, No. 3, pp. 523-529, 1999.
  • [11] Galinski, C., Strike Wing Unmanned Aerial Vehicles, Final Report; Grant no. N509 025836, National Centre of Research and Development, Warsaw 2011 (in Polish).
  • [12] Mystkowski, A., Robust Optimal Control of MAV Based on Linear Time Varying Decoupled Model Dynamics, Solid State Phenomena, Vol. IV, 2012.
  • [13] Mystkowski, A., An Application of Mu-synthesis for Control of a Small air Vehicle and Simulation Results, Journal of Vibration and Control, Vol. 14, No. 1, pp. 79-86, 2012.
  • [14] Garbowski, M., Sibilski, K., Application of Indicial Function Theory to Identification of MAV Aerodynamic Derivatives from Water Tunnel Testing, Mechanics in Aviation, ML XV, PTMTiS, 2012.
  • [15] Jaroszewicz, A., Garbowski, M., Sibilski, K. Zyluk, A., Estimation of MAV Unsteady Aerodybanic Parameters From Water Tunnel Testing, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 4-7 January 2011, Orlando, Florida, AIAA 2011-1162CP, 2011. 252
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.