PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 21, No. 2 | 65--68
Tytuł artykułu

Topology of C20 Based Spongy Nanostructures

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spongy materials are encountered in nature in zeolites used as molecular sieves. There are also synthetic compounds like spongy carbon, metal-organic frameworks MOFs, etc, with a hollow structure. The design and topological study of some hypothetical spongy nanostructures is presented in terms of map operations and genus calculation on their associated graphs. The design of nanostructures was performed by original software packages.
Słowa kluczowe
Wydawca

Rocznik
Strony
65--68
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Department of Chemistry, Faculty of Chemistry and Chemical Engineering Babes-Bolyai University, 400028 Cluj, Romania
autor
  • Department of Physical Chemistry, Collegium Medicum Nicolaus Copernicus University, Kurpińskiego 5, 85-096, Bydgoszcz, Poland, beatas@cm.umk.pl
Bibliografia
  • [1] M. V. Diudea, ed., Nanostructures: Novel Architecture, NOVA, New York, 2005.
  • [2] M. V. Diudea and C. L. Nagy, Periodic Nanostructures, Springer, Dordrecht, 2007.
  • [3] M. V. Diudea, Nanomolecules and Nanostructures: Polynomials and Indices, Univ. Kragujevac, Serbia, 2010.
  • [4] M. V. Diudea and C. L. Nagy, eds., Diamond and Related Nanostructures, Springer, Dordrecht, Heidelberg, New York, London, 2013.
  • [5] H. Terrones, A. L. Mackay, Triply periodic minimal surfaces decorated with curved graphite, Chem. Phys. Lett. 207, 45-50 (1993).
  • [6] H. Terrones, M. Terrones, Curved nanostructured materials, New J. Phys 5, 1261-12637 (2003).
  • [7] H. Terrones, A. L. Mackay, From C60 to negatively curved graphite, Prog. Crystal Growth Charact. 34, 25-36 (1997).
  • [8] S.J. Townsend, T.J. Lenosky, D.A. Muller, C.S. Nichols, V. Elser, Negatively curved graphite sheet model of amorphous carbon, Phys. Rev. Lett. 69, 921-924 (1992).
  • [9] H. A. Schwarz, Über Minimalflächen, Monatsber. Berlin Akad., Berlin, 1865.
  • [10] H. A. Schwarz, Gesammelte Matematische Abhandlungen, Springer, Berlin, 1890.
  • [11] F. Harary, Graph Theory, Addison-Wesley, Reading, MA,
  • 1969. [12] L. Euler, Elementa doctrinae solidorum, Novi. Comm. Acad. Scient. Imp. Petrop. 4, 109-160 (1758).
  • [13] O. Bonnet, Note sur la therorie generale des surfaces, CR. Acad. Sci. Paris 37, 529-532 (1853).
  • [14] M.V. Diudea, P.E. John, A. Graovac, M. Primorac, T. Pisanski, Leapfrog and related operations on toroidal fullerenes, Croat. Chem. Acta 76, 153-159 (2003).
  • [15] M.V. Diudea, Covering forms in nanostructures, Forma (Tokyo) 19, 131-163 (2004).
  • [16] M.V. Diudea, M. ¸ Stefu, P.E. John, A. Graovac, Generalized operations on maps, Croat. Chem. Acta, 79, 355-362 (2006).
  • [17] M. ¸ Stefu, M.V. Diudea, P.E. John, Composite operations on maps, Studia Univ. “Babes-Bolyai”,50, 165-174 (2005).
  • [18] M.V. Diudea, Nanoporous carbon allotropes by septupling map operations, J. Chem. Inf. Model. 45, 1002-1009 (2005).
  • [19] T. Pisanski and M. Randi´c, Bridges between geometry and graph theory, Geometry at Work. MAA Notes, 53, 174-194 (2000).
  • [20] M.V. Diudea and B. Szefler, Nanotube junctions and the genus of multi-tori, Phys. Chem. Chem. Phys., 14, 8111-8115 (2012).
  • [21] Coxeter HSM (1973) Regular polytopes. 3rd edn. Dover Publications, New York
  • [22] B. Grünbaum (1967) Convex polytopes. Wiley, New York
  • [23] Wells AF (1977) Three-dimensional nets and polyhedral. Wiley, New York
  • [24] Ziegler GM (1995) Lectures on polytopes. Springer-Verlag, New York.
  • [25] Stefu M, Diudea MV, CVNET software„ Babes-Bolyai Univ, Cluj, 2005.
  • [26] Cs.L. Nagy and M.V. Diudea, Nano-Studio software, “Babes-Bolyai” Univ., Cluj, 2009.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-48f1d7fc-127d-4c36-906f-6f82ee193b96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.