Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Tom 20, cz. 1 | 123--144
Tytuł artykułu

Characteristics of Bottom Ash from Municipal Solid Waste Incineration

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Charakterystyka popiołów dennych ze spalania stałych odpadów komunalnych
Języki publikacji
Waste-to-energy technologies are widely used for municipal solid waste management. Municipal solid waste incineration has reduced waste volume by 90%. The combustion process results in two types of waste: fly ash (FA) and bottom ash (BA). This study focuses on the chemical and environmental properties of municipal solid waste incineration (MSWI) bottom ash. The chemical composition and leaching properties of BA from Lithuania’s waste-to-energy plant, located in Klaipeda, was determined. Results show that chemical BA composition is almost stable in time and that major elements are silicon dioxide (57±2%), calcium oxide 16±2.5% and iron oxide 8±3.2%. The concentration of various heavy metals in BA is < 1%. Leaching tests showed that from BA leached large quantities of soluble salts (sulphates 2,816–10,012 mg·kg-1 and chlorides 1,869–3,046 mg·kg-1) and certain heavy metals (Mo 0.5–1.8 mg·kg-1, Pb 0.1–2.5 mg·kg-1). MSWI bottom ash does not meet the requirements for inert waste (2003/33/EC) but meets those for waste removal in non-hazardous waste landfills. The changing concentration of environmentally hazardous heavy metals indicates that the need for continuous BA eluate test is important.
Technologie produkcji energii z odpadów są szeroko stosowane w gospodarce odpadami komunalnymi. Spalanie stałych odpadów komunalnych zmniejsza ich objętość o 90%. W procesie spalania wytwarzane są dwa główne typy produktów ubocznych: popioły lotne (PL) i popioły denne (PD). W pracy omówiono właściwości chemiczne i środowiskowe PD pochodzących ze spalania stałych odpadów komunalnych (SOK). Określono skład chemiczny i wymywanie substancji z PD z litewskiej spalarni odpadów, której siedziba mieści się w Kłajpedzie. Wyniki pokazują, że skład chemiczny PD jest prawie stabilny w czasie, a podstawowe tlenki to dwutlenek krzemu (57±2%), tlenek wapnia 16±2,5% i tlenek żelaza 8±3,2%. Koncentracja różnych metali ciężkich w PD wynosi < 1%. Badania wymywania wykazały, że z PD wymywano duże ilości rozpuszczalnych soli (siarczanów 2816-10012 mg·kg-1 i chlorków 1869-3046 mg·kg-1), a także niektórych metali ciężkich (Mo 0,5-1,8 mg·kg-1, Pb 0,1-2,5 mg·kg-1). Popiół denny ze spalania stałych odpadów komunalnych nie spełnia wymagań dotyczących odpadów obojętnych (2003/33/WE), ale spełnia wymagania dotyczące ich usuwania na składowiska odpadów innych niż niebezpieczne. Zmieniające się koncentracja niebezpiecznych dla środowiska metali ciężkich wskazuje na konieczność ciągłego badania eluatu z popiełów dennnych.

Opis fizyczny
Bibliogr. 65 poz., tab., rys.
  • Vilnius Gediminas Technical University, Lithuania
  • Vilnius Gediminas Technical University, Lithuania
  • Vilnius Gediminas Technical University, Lithuania
  • Vilnius Gediminas Technical University, Lithuania
  • Vilnius Gediminas Technical University, Lithuania
  • 1. Abbà, A., Collivignarelli, M.C., Sorlini, S., Bruggi, M., (2014). On the reliability of reusing bottom ash from municipal solid waste incineration as aggregate in concrete. Composites: Part B, 58, 502-509.
  • 2. Adamcová, D., Vaverková, M.D., Stejskal, B., Břoušková, E., (2016). Household Solid Waste Composition Focusing on Hazardous Waste. Polish Journal of Environmental Studies, 25, 487-493.
  • 3. Allegrini, A., Maresca, A., Olsson, M.E., Holtze, M.S., Boldrin, A., Astrup, T.F., (2014). Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Management, 34, 1627-1636.
  • 4. Allegrini, E., Vadenbo, C., Boldrin, A., Astrup, T.F., (2016). Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. Journal of Environmental Management, 151, 132-143.
  • 5. Arena, U., Di Gregorio, F., (2014). Gasification of a solid recovered fuel in a pilot scale fluidized bed reactor. Fuel, 117, 528-536.
  • 6. Bayuseno, A.P., Schmahl, W.W., (2010). Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Management, 30, 1509-1520.
  • 7. Brown, E., Skougstad, M., Fishman, M., (1960). Methods for collection and analysis of water samples. Geological Survey Water-Supply Paper 1454, 310.
  • 8. Council decision 2003/33/EC of 19 December 2002, (2002). Establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Official Journal of the European Communities, 27-28.
  • 9. Chang, E.E., Pan, S.Y., Yang, L., Chen, Y.H., Kim, H., Chiang, P.C., (2015). Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics. Waste Management, 43, 283-292.
  • 10. Cheng A., (2012). Effect of incinerator bottom ash properties on mechanical and pore size of blended cement mortars. Materials & Design, 36, 859-864.
  • 11. Cornelis, G., Van Gerven, T., Vandecasteele, C., (2012). Antimony leaching from MSWI bottom ash: Modelling of the effect of pH and carbonation. Waste Management, 32, 278-286.
  • 12. Del Valle-Zermeño, R., Barreneche, C., Cabeza, L.F., Formosa, A. Fernández, A.I., Chimenos, J.M., (2016). MSWI bottom ash for thermal energy storage: An innovative and sustainable approach for its reutilization. Renewable Energy, 99, 431-436.
  • 13. Del Valle-Zermeño, R., Chimenos, J.M., Giró-Paloma, J., Formosa, J., (2014a). Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier. Chemosphere, 117, 402-409.
  • 14. Del Valle-Zermeño, R., Formosa, J., Prieto, M., Nadal, R., Niubó, R., Chimenos, J.M., (2014b). Pilot-scale road subbase made with granular material formulated with MSWI bottom ash and stabilized APC fly ash: Environmental impact assessment. Journal of Hazardous Materials, 266, 132-140.
  • 15. Del Valle-Zermeño, R., Romero-Güiza, M.S., Chimenos, J.M., Formosa, J., Mata-Alvarez, J., Astals, S., (2015). Biogas upgrading using MSWI bottom ash: An integrated municipal solid waste management. Renewable Energy, 80, 184-194.
  • 16. Di Gianfilippo, M., Costa, G., Pantini, S., Allegrini, E., Lombardi, F., Astrup, T.F., (2016). LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data. Waste Management, 47, 285-298.
  • 17. D1-805 (2016). Order of Minister of Environment of the Republic of Lithuania. Dėl atliekų deginimo įrenginiuose ir bendro atliekų deginimo įrenginiuose susidariusių pelenų ir šlako tvarkymo reikalavimų patvirtinimo [in Lithuanian], Vilnius, 10.
  • 18. European Waste Catalogue and Hazardous waste List, (2002). Environmental Protection Agency, 49.
  • 19. Ferraris, M., Salvo, M., Ventrella, A., Buzzi, L., Veglia, M., (2009). Use of vitrified MSWI bottom ashes for concrete production. Waste Management, 29, 1041-1047.
  • 20. Ghinea, C., Gavrilescu, M., (2016). Costs analysis of municipal solid waste management scenarios: IASI – Romania case study. Journal of Environmental Engineering and Landscape Management, 24, 185-199.
  • 21. Gori, M., Bergfeldt, B., Reichelt, J., Sirini, P., (2013). Effect of natural ageing on volume stability of MSW and wood waste incineration residues. Waste Management, 33, 850-857.
  • 22. Haiying, Z., Youcai, Z., Jingyu, Q., (2011). Utilization of municipal solid waste incineration (MSWI) fly ash in ceramic brick: Product characterization and environmental toxicity. Waste Management, 31, 331-341.
  • 23. Holm, O., Simon, F.G., (2017). Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Waste Management, 59, 229-236.
  • 24. Jurič, B., Hanžič, L., Ilič, R., Samec, N., (2006). Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Management, 26, 1436-1442.
  • 25. Jin, Y., Wen, J., Nie, Y., Chen, H., Wang, G., (2012). Biomass-biogas Recycling Technique Studies of Municipal Food Waste Disposal: A Review. Rocznik Ochrona Środowiska, 14, 21-55.
  • 26. Leme, M.M.V., Rocha, M.H., Lora, E.E.S., Venturini, O.J., Lopes, B.M., Ferreira, C.H., (2014). Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resources, Conservation and Recycling, 87, 8-20.
  • 27. Lidelöw, S., Lagerkvist, A., (2007). Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction. Waste Management, 27, 1356-1365.
  • 28. Li, X.G., Lv, Y., Ma, B.B., Chen, Q.B., Yin, X.B., Jian, S.W., (2012). Utilization of municipal solid waste incineration bottom ash in blended cement. Journal of Cleaner Production, 32, 96-100.
  • 29. Lin, W.Y., Heng, K.S., Sun, X., Wang, J.Y., (2015). Accelerated carbonation of different size fractions of MSW IBA and the effect on leaching. Waste Management, 41, 75-84.
  • 30. LST EN 12457-2:2003, (2003). Characterization of waste – leaching – compliance test for leaching of granular waste materials and sludges. Part 2: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). Lithuanian Standards board, Vilnius, 32.
  • 31. LST EN ISO 15586:2004, (2004). Water quality – determination of trace elements using atomic absorption spectrometry with graphite furnace. Lithuanian Standards board, Vilnius, 23.
  • 32. LST EN ISO 10304-1:2009, (2009). Water quality – determination of dissolved anions by liquid chromatography of ions. Part 1: determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate. Lithuanian Standards board, Vilnius, 15.
  • 33. LST EN 13137:2002, (2002). Characterization of waste – determination of total organic carbon (TOC) in waste, sludges and sediments. Lithuanian Standards board, Vilnius, 24.
  • 34. LST ISO 8245:2003, (2003). Water quality. Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC), Lithuanian Standards board, Vilnius, 11.
  • 35. Marandi, A., Polikarpus, M., Jõeleht, A., (2013). A new approach for describing the relationship between electrical conductivity and major anion concentration in natural waters. Applied Geochemistry, 38, 103-109.
  • 36. Mitteilungen der Länderarbeitsgemeinschaft Abfall (LAGA)20 (2003). Anforderungen an die stoffliche Verwertung von mineralischen, Reststoffen/Abfällen. Technische Regeln, 128.
  • 37. Müller, U., Rübner, K., (2006). The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cement and Concrete Research, 36, 1434-1443.
  • 38. Mucsi, G., Szenczi, A., Molnár, Z., Lakatos, J., (2016). Structural formation and leaching behavior of mechanically activated lignite fly ash based geopolymer. Journal of Environmental Engineering and Landscape Management, 24, 48-59.
  • 39. Ng, W.P.Q., Lam, H.L., Varbanov, P.S., Klemeš, J.J., (2014). Waste-to-Energy (WTE) network synthesis for Municipal Solid Waste (MSW). Energy Conversion and Management, 85, 866-874.
  • 40. Ore, S., Todorovi, J., Ecke, H., Grennberg, K., Lidelöw, S., Lagerkvist, A., (2007). Toxicity of leachate from bottom ash in a road construction, Waste Management, 27, 1626-1637.
  • 41. Patil, P., N., Sawant, D., V., Deshmukh, R., N., (2012). Physico-chemical parameters for testing of water – a review. International Journal of Environmental Sciences, 3(3), 1194-1207.
  • 42. Robinson, H.D., Knox, K., Formby, R., Bone, B.D., (2004). Testing of residues from incineration of municipal solid waste. Science Report P1-494/SR2, 125.
  • 43. Rocca, S., Van Zomeren, A., Costa, G., Dijkstra, J.J., Comans, R.N.J., Lombardi, F., (2012). Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Waste Management, 32, 759-768.
  • 44. Rusydi, A. F., (2018). Correlation between conductivity and total dissolved solid in various type of water: A review, IOP Conference Series: Earth and Environmental Science, 118, 2-7.
  • 45. Rednek, E., Ducom, G., Germain, P., (2007). Influence of waste input and combustion technology on MSWI bottom ash quality. Waste Management, 27, 1403-1407.
  • 46. Rentizelas, A.A., Tolis, A.I., Tatsiopoulos, I.P., (2014). Combined Municipal Solid Waste and biomass system optimization for district energy applications. Waste Management, 34, 36-48.
  • 47. Pinto, F., André, R.N., Carolino, C., Miranda, M., Abelha, P., Direito, D., Perdikaris, N., Boukis, I., (2014). Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends. Fuel, 117, 1034-1044.
  • 48. Rambaldi, E., Esposito, L., Andreola, F., Barbieri, L., Lancellotti, I., Vassura, I.,(2010). The recycling of MSWI bottom ash in silicate based ceramic. Ceramics International, 36, 2469-2476.
  • 49. Santos, R.M., Mertens, G., Salman, M., Cizer, Ö., Van Gerven, T., (2013). Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. Journal of Environmental Management, 128, 807-821.
  • 50. Su, L., Guo, G., Shi, X., Zuo, M., Niu, D., Zhao, A., Zhao, Y., (2013). Copper leaching of MSWI bottom ash co-disposed with refuse: Effect of shortterm accelerated weathering. Waste Management, 33, 1411-1417.
  • 51. Tan, S.T., Hashim, H., Lim, J.S., Ho, W.S., Lee, C.T., Yan, J., (2014). Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia. Applied Energy, 136, 797-804.
  • 52. Tang, P., Florea, M.V.A., Spiesz, P., Brouwers, H.J.H., (2015). Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Construction and Building Materials, 83, 77-94.
  • 53. Tang, J., Steenari, B.M., (2016). Leaching optimization of municipal solid waste incineration ash for resource recovery: a case study of Cu, Zn, Pb and Cd. Waste Management, 48, 315-322.
  • 54. Thirumalini, S., Joseph, K., (2009). Correlation between Electrical Conductivity and Total Dissolved Solids in Natural Waters. Malaysian Journal of Science, 28(1), 55-61.
  • 55. Van Der Sloot, H.A., Rietra, R.P.J.J, Hoede, D., (2000). Evaluation of leaching behavior of selected wastes designated as hazardous by means of basic characterization tests. Netherlands Energy Research Foundation ENC, Contract Research report ECN-C-00-050, 155.
  • 56. Veli, S., Kirli, L., Alyuz, B., Durmusoglu, E., (2008). Characterization of Bottom Ash, Fly Ash, and Filter Cake Produced from Hazardous Waste Incineration. Polish Journal of Environmental Studies, 17, 139-145.
  • 57. Willits, C. O., (1951). Methods for Determination of Moisture-Oven Drying. Analytical Chemistry, 23(8), 1058-1062.
  • 58. Walton, N., R., G., (1989) Electrical Conductivity and Total Dissolved Solids – What is Their Precise Relationship?. Desalination, 72, 275-292.
  • 59. Toraldo, E., Saponaro, S., Careghini, A., Mariani, E., (2013). Use of stabilized bottom ash for bound layers of road pavements. Journal of Environmental Management, 121, 117-123.
  • 60. Turskis, Z., Lazauskas, M., Zavadskas, E.K., (2012). Fuzzy multiple criteria assessment of construction site alternatives for non-hazardous waste incineration plant in Vilnius city, applying ARAS-F and AHP methods. Journal of Environmental Engineering and Landscape Management, 20, 110-120.
  • 61. Xia, Y., He, P., Shao, L., Zhang, H., (2017). Metal distribution characteristic of MSWI bottom ash in view of metal recovery. Journal of Environmental Sciences, 52, 178-189.
  • 62. Zekkos, D., Kabalan, M., Syal, S.M., Hambright, M., Sahadewa, A., (2013). Geotechnical characterization of a municipal solid waste incineration ash from a Michigan monofill, Waste Management, 33, 1442-1450.
  • 63. Yao, Q., Samad, N.B., Keller, B., Seah, X.S., Huang, L., Lau, R., (2014). Mobility of heavy metals and rare earth elements in incineration bottom ash through particle size reduction. Chem. Eng. Sci., 118, 214-220.
  • 64. Zhou, H., Long, Y.Q., Meng, A.H., Li, Q.H., Zhang, Y.G., (2015). Classification of municipal solid waste components for thermal conversion in wasteto- energy research. Fuel, 145, 151-157.
  • 65. Zhou, H., Meng, A.H., Long, Y.Q., Li, Q.H., Zhang, Y.G., (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renew. Sust. Energ. Rev., 36, 107-122.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.