PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | T. 44, nr 4 | 17--32
Tytuł artykułu

Investigation of oxide crystals by means of synchrotron and conventional X-ray diffraction topography

Treść / Zawartość
Warianty tytułu
PL
Badanie monokryształów tlenkowych za pomocą synchrotronowej i konwencjonalnej rentgenowskiej topografii dyfrakcyjnej
Języki publikacji
EN
Abstrakty
EN
X-ray diffraction topography, exploring both conventional and synchrotron sources of X-rays, has been widely used for the investigation of the structural defects in crystals of oxides. The majority of bulk oxide crystals have been grown by the Czochralski method from a melted mixture of high purity oxides. Some important oxide crystals like quartz and ZnO have been obtained by the hydrothermal method. In the case of crystals grown by the first method, synchrotron diffraction topography can be and was used for studying individual dislocations and their complexes (e.g. glide bands, sub-grain boundaries), individual blocks, twinning, the domain structure and various segregation effects negatively affecting crystal properties. What is more, the topographical investigation can provide information concerning the reasons for the generation of the defects, which becomes useful for improving the growth technology. In the present paper the possibilities of the diffraction topography are discussed on the basis of several investigations of the oxide crystals, in particular garnets, orthovanadates, mixed calcium barium and strontium niobates as well as praseodymium lanthanum aluminates. the majority of the results refer to oxide crystals grown at the Institute of Electronic Materials Technology (ITME). The synchrotron investigations included in the paper were performed by the authors at the HASYLAB Synchrotron Laboratory in Hamburg.
PL
Rentgenowska topografia dyfrakcyjna, wykorzystująca zarówno konwencjonalne, jak i synchrotronowe źródła promieniowania rentgenowskiego, jest od wielu lat z powodzeniem stosowana do badania defektów strukturalnych w różnego rodzaju monokryształach. Szeroką grupę tych materiałów stanowią kryształy tlenkowe, które w większości są otrzymywane metodą Czochralskiego ze stopionej mieszaniny tlenków o wysokiej czystości. Do otrzymywania kryształów tlenków, takich jak kwarc i ZnO, stosuje się metodę hydrotermalną. rentgenowska topografia dyfrakcyjna może być wykorzystana do badania indywidualnych dyslokacji i ich kompleksów (np. pasma poślizgowe, granice niskokątowe), pojedynczych bloków, zbliźniaczeń, struktury domenowej i różnych efektów segregacyjnych. Wszystkie te defekty mogą wpływać negatywnie na jednorodność i właściwości kryształów. Badania topograficzne mogą również dostarczyć informacji dotyczących przyczyn powstawania defektów, co przydatne jest w doskonaleniu technologii. W niniejszej pracy omówiono możliwości topografii dyfrakcyjnej na podstawie przeprowadzonych badań szeregu kryształów tlenkowych, w szczególności granatów, ortowanadianów, mieszanych niobianów wapnia, baru i strontu oraz glinianów prazeodymu i lantanu. Większość wyników dotyczy monokryształów tlenków otrzymywanych w Instytucie Technologii Materiałów Elektronicznych (ITME). uwzględnione badania synchrotronowe zostały przeprowadzone przez autorów w Laboratoriom Synchrotronowym HASYLAB w Hamburgu.
Wydawca

Rocznik
Strony
17--32
Opis fizyczny
Bibliogr. 81 poz., rys.
Twórcy
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
autor
  • National Centre for Nuclear research, Sołtana 7, 05-400 Otwock-Świerk, Poland
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
autor
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
  • Institute of Experimental Physics, university of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
Bibliografia
  • [1] Solski I. M., Sugar Yu D., Vakiv M. M.: Growing Large Size Complex Oxide Single Crystals by Czochralski Technique for Electronic Devices, Acta Phys. Pol. A, 2013, 124, 314 – 320
  • [2] Bruni F. J., Johnston G. M.: Careful system design speeds laser-crystal growth, Solid State Laser Materials Laser Focus World, 1994, 205 – 212
  • [3] Cockayne B., Gates M. P.: Growth striations in vertically pulled oxide and fluoride single crystals, J. Mat. Science, 1967, 2, 118 – 123
  • [4] Carruthers J. R.: Origins of convective temperature oscillations in crystal growth melts, J. Cryst. Growth, 1976, 32, 13 – 26
  • [5] Dąbkowska H. A., Gaulin B. D.: Growth of single crystals of selected cup rates by the optical floating zone technique, Journal of Optical Electronics and Advanced Materials, 2007, 9, 1215 – 1220
  • [6] Dąbkowska H. A., Dabkowski A. B.: Crystal Growth of Oxides by optical Floating Zone, in Springer Handbook of Crystal Growth, Springer, 2010
  • [7] Brown C. S., Kell R. C., Thomas L. A., Wooster N., Wooster W. A.: The growth and properties of Investigation of oxide crystals by means of synchrotron large crystals of synthetic quartz, Mineralogical Magazine, 1952, 29, 858 – 874
  • [8] Brown C. S., Thomas L. A.: The effect of impurities on the growth of synthetic quartz, J. Phys. Chem. Sol., 1980, 13, 337 – 343
  • [9] Li W. - J., Shi E. - W., Zhong W. - Z., Yin Z. - W.: Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth, 1999, 203, 86 – 196
  • [10] Zhang S., Yao S., Li J., Zhao L., Wang J., Boughton R. I.: Growth habit control of ZnO single crystals in molten hydrous alkali solutions, J. Cryst. Growth, 2011, 336, 56 – 59
  • [11] McLaren A. C., Cook R. F., Hyde S. T., Tobin R. C.: The mechanisms of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz, Phys. Chem. Minerals, 1983, 9, 79 – 94
  • [12] Tanner B. K.: X-ray diffraction Topography, Pergamon Press, Oxford, 1976
  • [13] Bowen D. K., Tanner B. K.: High resolution X-ray diffractometry and topography, Taylor and Francis, London, 1998
  • [14] Authier A.: Dynamical theory of X-ray diffraction, Oxford University Press, Oxford, 2001
  • [15] Lang A. R.: A method for the examination of crystal sections using penetrating characteristic radiation, Acta. Metall., 1957, 5, 358 – 364.
  • [16] Lang A. R.: Direct observation of Individual Dislocation by X-Ray Diffraction, J. Appl. Phys., 1958, 29, 597 – 598
  • [17] Bonse U., Kappler E.,: Röntgenographisches Abbildung des Verzerrungsfeldes einzelner Versetzungen in Germanium-Einkristallen, Z. Naturforsch., 1958, 214, 348 – 349
  • [18] Bond W. L., Andrus J.: Structural Imperfections in Quartz Crystals, Am. Minneralogist, 1952, 37, 622 – 632
  • [19] Bonse U.: Zur röntgenographishen Bestimmung des Types einzelner Versetzungen in Germanium- -Einkristallen, Z. Phys, 1958, 153, 278 – 296
  • [20] Renninger M.: The Asymmetric Bragg Reflection and its Application in Double Diffractometry, Adv. X-ray Analysis, 1967, 10, 32 – 36
  • [21] Renninger M., Doppel diffraktometrische Transmissions- Topographie, Z. Naturforsch. (a), 1964, 19, 783 – 787
  • [22] Schultz L. G.: Method of using a fine-focus X-ray tube for examining the surface of a single crystal, Trans. AIME, 1954, 200, 1082 – 1083
  • [23] Berg W. F.: Übereinröntgenographische Methode zur Untersuchung von Gitterstörungen an Kristallen, Naturwissenschaften, 1931, 19, 391 – 396
  • [24] Barrett C. S.: A new microscopy and its potentialities, Trans. Metal. Soc. AIME, 1945, 161, 15 – 64
  • [25] Tuomi T., Naukkarinen K., Rabe P.: Use of Synchrotron X-Ray Diffraction Topography, Phys. Stat. Sol. (a), 1974, 25, 93 – 106
  • [26] Hart M.: Synchrotron radiation - its application to high-speed, high-resolution X-ray diffraction topography, J. Appl. Cryst., 1975, 8, 436 – 444
  • [27] Tanner B. K., Safa M., Midgley D., Bordas J.: Observation of magnetic domain wall movements by X-ray topography using synchrotron radiation, J. of Magnetism and Magnetic Materials, 1976, 1, 337 – 341
  • [28] Tanner B. K.: Crystal assessment by X-ray topography using synchrotron radiation, Progress in Crystal Growth and Characterization, 1976, 1, 23 – 56
  • [29] Hart M., Sauvage M., Siddons D. P.: White beam synchrotron X-ray interferometry, Acta Cryst. A, 1980, 36, 947 – 951
  • [30] Wheatmore R. W., Goddard P. A., Tanner B. K.: Direct imaging of travelling Rayleigh waves by stroboscopic X-ray topography, Nature, 1982, 299, 44 – 46
  • [31] High-throughput, High-resolution X-ray topography imaging system: XRT micron, The Rigaku Journal, 2014, 30, 1
  • [32] Omote K.: Crystal defects in SiC wafers and a new X-ray topography system, The Rigaku Journal, 2013, 29, 1–8
  • [33] Lang A. R., Miuscov V.F.: Dislocation configurations in magnesium oxide observed by x-ray topography, Phil. Mag., 1964, 10, 263 – 268
  • [34] Basterfield J., Prescott M. J., Cockayne B.: An X-ray diffraction topographic study of single crystals of melt-grown yttrium aluminium garnet, J. Material Sci., 1968, 3, 33 – 40
  • [35] Cockayne B., Chesswas M., Born P. J., Filby J. D.: The morphology and defect characteristics of vertically pulled MgAl2O4 single crystals, J. Material Sci., 1969, 4, 236 – 241
  • [36] Mag C. A., Shah J. S.: Dislocation reactions and cavitation studies in melt-grown sapphire, J. Mater. Sci., 1969, 4, 179 – 187
  • [37] Belouet C.:About the crystalline perfection of Nd- -doped YAG single crystals, J. Cryst. Growth, 1972, 15, 188 – 194
  • [38] Neuroth G., Wallrafen F.: Czochralski growth and characterization of pure and doped YAlO3single crystals, J. Cryst. Growth, 1999, 435 – 439
  • [39] Stacy W. T., Enz U.: The characterization of magnetic bubble-domain materials with X-ray topography, Trans IEEE Magnetics Mag., 1972, 8, 268 – 272
  • [40] Stacy W. T.: Dislocations, facet regions and growth striations in garnet substrates and layers, J. Cryst. Growth, 1974, 24/25, 137 – 143
  • [41] Spencer W. J., Haruta K.: Defects in Synthetic Quartz, J. Appl. Phys., 1966, 37, 549 – 554
  • [42] McLaren A. C., Osborne C. F., Saunders L. A.: X- -ray topographic study of dislocations in synthetic quartz, Phys. Stat. Sol. (a), 1971, 4, 235 – 247
  • [43] Takagi M., Mineo H., Sato M.: Defects in synthetic quartz, J. Cryst. Growth, 1974, 24/25, 541 – 543
  • [44] Croxall D. F., Ward R. C. C., Wallace C. A., Kell W. Wierzchowski, A. Malinowska, K. Wieteska, R. C.: Hydrothermal growth and investigation of Li-doped zinc oxide crystals of high purity and perfection, J. Cryst. Growth, 1974, 22, 117 – 124
  • [45] Baruchel J., Di Michiel M., Lafford T., Lhuissier P., Meyssonier J., Nguyen-Thi H., Philip A., Pernot P., Salvo L., Scheel M.: Synchrotron X-ray imaging for crystal growth studies, C. R. Physique, 2013, 14 (1-2), 208 – 220
  • [46] Kasper E., Burle N., Escoubas S., Werner J., Oeheme M., Lyutovich K.: Strain relaxation of metastable SiGe/Si:Investigation with two complementary X-RayTechniques, J. Appl. Phys., 2012, 111, 063507-1 –063507-10.
  • [47] Yao S., Hu X., Yan T., Liu H., Wang J., Qin X., Chen Y.: Twinning structures in near-stoichiometric lithium niobate single crystals, J. Appl. Cryst., 2010, 43, 276 – 279
  • [48] Muehlberg M., Burianek M., Joschko B., Klimm D., Danilewsky A., Gelissen M., Bayarjargal L., Görler G. P., Hildmann B. O.: Phase equilibria, crystal growth and characterization of the novel ferroelectric tungsten bronzes CaxBa1-xNb2O6 (CBN) and CaxSryBa1-x-yNb2O6 (CSBN), J. Cryst.Growth, 2008, 310, 2288 – 2294
  • [49] Prokhorov I. A., Zakharov B. G., Senchekov A. S., Egorov A. V., Camel D., Tison P.: Structural features of Ge(Ga) single crystals grown by the floating zone method in microgravity, J. Cryst. Growth, 2008, 310 (22), 4701 – 4707
  • [50] Yoneda Y., Mizuki J., Takeda H., Shiosaki T.: X- -ray topography of piezoelectric La3Ta14Ga5.5O14 crystal grown by Czochralski Method, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2008, 55 (5), 971 – 974
  • [51] Yao G.D., Hou S.Y., Dudley M., Phillips J.M.: Synchrotron X-ray Topography Studies of Twin Configurations in Lanthanum Aluminate Single Crystals, J. Mater. Res., 1992, 7, 1847 – 1855
  • [52] Dudley M., Yao G. D.: Synchrotron Topography of Phase Transitions in Perovskite-Like Crystals, J. Phys. D, 1993, 26, A120 – A125
  • [53] Cerva H., Graeff W.: Contrast investigations of surface acoustic waves by stroboscopic topography II Wave field deviation contrast, Phys. Stat. Sol. (a), 1985, 87, 507 – 516
  • [54] Wieteska K.: X-ray topography using synchrotron radiation, Acta Physica Polonica A, 1994, 86, 545 – 552
  • [55] Malinowska A., Lefeld-Sosnowska M., Härtwig J.: Contrast in transmission X-ray diffraction topographs of growth defects in the core of SrLaGaO4 single crystals, J. Appl. Cryst., 2013, 46, 48 – 54
  • [56] Mazur K., Wierzchowski W.: X-ray topographic investigation of growth defects and lattice parameter measurements within crystals of heavily neodymium doped yttrium aluminium garnet, J. Cryst. Growth, 1995, 148, 345 – 354
  • [57] Wierzchowski W., Wieteska K., Malinowska A., Wierzbicka E., Lefeld-Sosnowska M., Świrkowicz M., Łukasiewicz T., Pajączkowska A., Paulmann C.: Synchrotron Diffraction Topography in Studying of the Defect Structure in Crystals Grown by the Czochralski Method, Acta Phys. Pol. A, 2013, 124, 350 – 356
  • [58] Wieteska K., Wierzchowski W., Wierzbicka E., Malinowska A., Lefeld-Sosnowska M., Łukasiewicz T., Graeff W.: X-ray topographic studies of defects structure in YVO4 crystal, Acta Phys. Pol. A, 2008, 114 (2), 455 – 461
  • [59] Wierzbicka E., Malinowska A., Wieteska K., Wierzchowski W., Lefeld-Sosnowska M., Świrkowicz M., Łukasiewicz T., Paulamann C.: Characterization of the Defect Structure in Gadolinum Orthovanadate Single Crystals Grown by the Czochralski Method, Acta Phys. Pol. A, 2012, 121, 906 – 909
  • [60] Wieteska K., Wierzchowski W., Graeff W., Lefeld- -Sosnowska M., Pajączkowska A., Wierzbicka E., Malinowska A.: Investigation of the defect distribution along the growth direction in GdCOB crystals by synchrotron and conventional X-ray topography, J. Aloys. Comp., 2005, 401, 69 – 74
  • [61] Malinowska A., Lefeld-Sosnowska M., Wieteska K., Wierzchowski W., Graeff W., Pajaczkowska A.: X-ray topography of Ca0,5Sr0,5NdAlO4 single crystal, J. Cryst. Growth, 2008, 310 (14), 3398 – 3402
  • [62] Lefeld-Sosnowska M., Olszyńska E., Wierzchowski W., Wieteska K., Graeff W., Pajączkowska A., Kłos A.: Conventional and synchrotron radiation back reflection topography of GdCa4O(BO3)3 crystals, J. Alloys. Comp., 2004, 382, 153 – 159
  • [63] Wieteska K., Wierzchowski W., Malinowska A., Turczyński S., Lefeld-Sosnowska M., Pawlak D.A., Łukasiewicz T., Paulmann C.: Synchrotron Topographic Studies of Domain Structure in Czochralski Grown PrxLa1-xAlO3 and PrxLa1-x-yMgyAlO3 Crystals, Acta Phys. Pol. A, 2012, 121, 910 – 914
  • [64] Wieteska K., Wierzchowski W., Malinowska A., Turczyński S., Lefeld-Sosnowska M., Pawlak D. A., Łukasiewicz T., Graeff W.: X-ray Topographic Investigations of Domain Structure in Czochralski Grown PrxLa1-xAlO3 Crystals, Acta Phys. Pol. A, 2010, 117, 268 – 271
  • [65] Wieteska K., Wierzchowski W., Malinowska A., Lefeld-Sosnowska M., Świrkowicz M., Łukasiewicz T., Paulmann C.: Synchrotron diffraction topography of SrxBa1−xNb2O6 (SBN), CaxBa1−xNb2O6 (CBN) and mixed (Ca0.28Ba0.72)y(Sr0.61Ba0.39)1−yNb2O6 (CSBN) crystals, Rad. Phys. Chem., 2013, 93, 87 – 91.
  • [66] Kołodziejak K., Wierzchowski W., Wieteska K., Malinowski M., Graeff W., Łukasiewicz T.: The Investigation of structural perfection and faceting in highly Er-doped Yb3Al5O12 Crystals, Cryst. Res. Technol., 2008, 43, 369 – 373
  • [67] Wierzchowski W., Wieteska K., Graeff W., Sakowska H., Łukasiewicz T., Pawłowska M.: Synchrotron X-ray investigation of La0.3Sr0.7Al0.65Ta0.35O3 crystals, Cryst. Res. Technol. 2005, 40, 517 – 522
  • [68] Savytskii D., Senyshyn A., Matkowskii A., Vaylechko L., Wieteska K., Wierzchowski W., Łukasiewicz T., Bismayer U.: White beam synchrotron X-ray topography studies of twinning in GdFeO3-type perovskite crystals, Z. Kristallogr., 2003, 218, 17 – 25
  • [69] Malinowska A., Lefeld-Sosnowska M., Wieteska K., Wierzchowski W., Härtwig J., Graeff W.: Synchrotron topographic studies of growth defects in the core of a SrLaGaO4 crystals, Phys. Stat. Sol. (a), 2009, 206, 1816 – 1819
  • [70] Mazur K., Sarnecki J., Wierzchowski W., Wieteska K., Turos A.: X-ray characterization of GGG homoepitaxial layers with introduced divalent Ni ions, Rad. Phys. Chem., 2011, 80, 1084 – 1087
  • [71] Mazur K., Sarnecki J., Borysiuk J., Wierzchowski W., Wieteska K., Turos A.: X-ray study of gadolinium gallium garnet epitaxial layers containing divalent Co ions, Thin Solid Films, 2011, 519, 2111 – 2115
  • [72] Paszkowicz W., Romanowski P., Bąk-Misiuk J., Wierzchowski W., Wieteska K., Graeff W., Iwanowski R.J., Heionnen M.H., Ermakova O., Dąbkowska H.A.: Characterization of an Yb:LuVO4 single crystal using X-ray topography, high-resolution X-ray diffraction, and X-ray photoelectron spectroscopy, Rad .Phys. Chem., 2011, 80, 1001 – 1007
  • [73] Balcer T., Wierzchowski W., Wieteska K.: The Simulation of Bragg-Case Section Images οf Dislocations and Inclusions in Aspect of Identification of Defects in SiC Crystals, Acta Phys. Pol. A, 2010, 117, 336 – 340
  • [74] Wierzchowski W., Wieteska K., Malinowska A., Wierzbicka E., Romaniec M., Lefeld-Sosnowska M., Świrkowicz M., Łukasiewicz T., Sakowska H., Paulmann C.: Ghost segregation pattern and ferroelectric domains in mixed calcium-strontium barium niobates, X-ray Spectrometry, 2015, 44, 356 – 362
  • [75] Wierzbicka E., Malinowska A., Wieteska K., Wierzchowski W., Lefeld-Sosnowska M., Świrkowicz M., Łukasiewicz T., Paulmann C.: Characterization of crystal lattice defects in calcium molybdate single crystals (CaMoO4) by means of X-ray diffraction topography, X-ray Spectrometry, 2015, 44, 351 – 355
  • [76] Authier A.: Contrast of dislocation images in X-ray transmission topography, Advan. X-ray Analysis, 1967, 10, 9 – 31
  • [77] Sen B.: Note on the stresses produced by nuclei of thermo-elastic strain in a semi-infinite elastic solid, J. Quant. Mech, 1949, VIII (4), 365 – 369
  • [78] http://www.esrf.eu/home/UsersAndScience/Experiments/StructMaterials/ID19/Techniques/Diffraction/Overview.html (online 2018)
  • [79] Wierzbicka E., Malinowska A., Wierzchowski W., Kisielewski J., Świrkowicz M., Szyrski W., Romaniec M., Mazur K.: Rentgenowska topografia dyfrakcyjna defektów sieci krystalicznej w monokryształach MgAl2O4 i ScAlMgO4 otrzymywanych w różnych warunkach technologicznych, Materiały Elektroniczne (Electronic Materials), 2015, 43, 1, 29 – 39
  • [80] Malinowska A., Wierzbicka E., Wierzchowski W., Mazur K., Romaniec M., Kisielewski J., Świrkowicz M., Szyrski W., Drozdowski W.: Badanie struktury defektowej w nowych rodzajach scyntylacyjnych monokryształów mieszanych granatów lutetowo--itrowo-glinowych [LuxY1-x]3Al5O12 (LuYAG) niedomieszkowanych oraz aktywowanych prazeodymem, Materiały Elektroniczne (Electronic Materials), 2015, 43, 1, 11 – 28
  • [81] Świrkowicz M., Szyrski W., Kisielewski J., Wieteska K., Wierzchowski W., Malinowska A., Wierzbicka E., Karaś A., Jurkiewicz-Wegner E.: Wzrost monokryształów molibdenianu wapnia domieszkowanych jonami ziem rzadkich (CaMoO4:RE) do badań w zakresie immobilizacji odpadów radioaktywnych, Materiały Elektroniczne (Electronic Materials), 2013, 41, 4, 10 – 19
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-47efc2bf-7541-4156-bcc0-db8a14ddc28f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.