Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 66, nr 2 | 71--94
Tytuł artykułu

Indentation theory on orthotropic materials subjected to a frictional moving punch

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
The present article establishes a general theory of frictional moving contact of orthotropic materials indented by a moving rigid punch with various punch profiles. The punch moves to the right or left at a constant speed with the shear stress arising inside the contact region. The motion should be subsonic. By using Galilean transformation and Fourier transform, a singular integral equation of the second kind is obtained, solution of which has a non-square-root or unconventional singularity. Numerical results are presented to show the influences of relative moving velocity and the friction coefficient on surface in-plane stress for each case of the four types of punches, which demonstrates that the surface crack initiation and propagation in load transfer components more likely occur at the trailing edge. The present theory provides a basis for explaining the surface damage mechanism of orthotropic materials under an indentation loading and for exploiting the physics behind the different punch profiles.

Opis fizyczny
Bibliogr. 24 poz., rys.
  • School of Aerospace Engineering and Applied Mechanics Tongji University Shanghai 200092, People’s Republic of China,
  • State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics Dalian University of Technology Dalian 116024, People’s Republic of China,
  • School of Mechanical Engineering Yonsei University Seoul 120-749, Republic of Korea pp. 71 - 94
  • 1. S. Sampath, H. Herman, N. Shimoda, T. Saito, Thermal spray processing of FGMs, MRS Bulletin, 20, 27–31, 1995.
  • 2. W.A. Kaysser, B. Ilschner, FGM research activities in Europe, MRS Bulletin, 20, 22–26, 1995.
  • 3. L.A. Galin, Contact problems in the theory of elasticity, Gostekhizdat, Moscow, 1953; English transl.: 1961.
  • 4. G.M. Gladwell, Contact Problems in the Classical Theory of Elasticity, Kluwer Academic Publishers, Dordrecht, 1980.
  • 5. K.L. Johnson, Contact Mechanics, Cambridge University Press, London, 1985.
  • 6. D.A. Hills, D. Nowell, A. Sackfield, Mechanics of Elastic Contacts, Butterworth-Heinemann, Oxford, 1993.
  • 7. D. Shi, Y. Lin, T.C. Ovaert, Indentation of an orthotropic half-space by a rigid ellipsoidal indenter, Journal of Tribology, 125, 223–231, 2003.
  • 8. S.R. Swanson, Hertzian contact of orthotropic materials, International Journal of Solids and Structures, 41, 1945–1959, 2004.
  • 9. S.R. Swanson, Contact deformation and stress in orthotropic plates, Composites: Part A, 36, 1421–1429, 2005.
  • 10. G. Lykotrafitis, H.G. Georgiadis, P.A. Gourgiotis, Rapid sliding motion of a rigid frictionless indenter with a flat base over a thermoelastic half-space, Archive of Applied Mechanics, 82, 1481–1495, 2012.
  • 11. J.W. Craggs, A.M. Roberts, On the motion of a heavy cylinder over the surface of an elastic solid, ASME Journal of Applied Mechanics, 24, 207–209, 1967.
  • 12. D.L. Clement, On the motion of a heavy cylinder over the surface of an anisotropic elastic solid, SIAM Journal on Applied Mathematics, 19, 116–124, 1970.
  • 13. H.G. Georgiadis, J.R. Barber, On the super-Rayleigh/subseismic elastodynamic indentation problem, Journal of Elasticity, 31,141–161, 1993.
  • 14. L.M. Brock, Exact analysis of dynamic sliding indentation at any constant speed on an orthotropic or transversely isotropic half-space, ASME Journal of Applied Mechanics, 69, 340–345, 2002.
  • 15. J.R. Baber, M. Cominon, Rolling of elastic cylinders with friction at supersonic speed, International Journal of Solids and Structures, 18, 783–789, 1982.
  • 16. L.M. Brock, Some analytical results for heating due to irregular sliding contact of thermoelastic solids, Indian Journal of Pure and Applied Mathematics, 27, 1257–1278, 1996.
  • 17. L.M. Brock, Rapid sliding indentation with friction of a pre-stressed thermoelastic material, Journal of Elasticity, 53, 161–188, 1999.
  • 18. L.M. Brock, H.G. Georgiadis, Sliding contact with friction on a thermoelastic solid at subsonic, transonic and supersonic speeds, Journal of Thermal Stresses, 23, 629–656, 2000.
  • 19. L.M. Brock, H.G. Georgiadis, Multiple-zone sliding contact with friction on an anisotropic thermoelastic half-space, Int. J. Solids & Structures 44, 2820–2836, 2007.
  • 20. Y.T. Zhou, K.Y. Lee, Y.H. Jang, Influences of the moving velocity and material property on frictionless contact problem of orthotropic materials indented by a moving punch, Archives of Mechanics, 65, 195–217, 2013.
  • 21. N.I. Muskhelishvili, Singular Integral Equations, P. Noordhoff, Groningen, 1953. 94 Y. T. Zhou, K. Y. Lee, Y. H. Jang
  • 22. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products, 4th ed., Academic Press, New York, 1980.
  • 23. F. Erdogan, Complex Function Technique, Academic Press, New York, 1975.
  • 24. S. Suresh, M. Olsson, A.E. Giannakopoulos, N.P. Padture, J. Jitcharoen, Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surfaces, Acta Materialia, 47, 3915–3926, 1999.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.