PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 20, no. 4 | 567--578
Tytuł artykułu

Extended warranty of medical equipment subject to imperfect repairs: an approach based on generalized renewal process and Stackelberg game

Treść / Zawartość
Warianty tytułu
PL
Rozszerzona gwarancja na sprzęt medyczny podlegający niepełnym naprawom: podejście oparte na uogólnionym procesie odnowy i modelu Stackelberga
Języki publikacji
EN
Abstrakty
EN
Due to its advanced technology, maintenance services of healthcare equipment have been commonly executed by the original equipment manufacturer (OEM), which can be characterized as a monopolist. In this context, hospitals require high availability of their equipment at a reasonable servicing cost, whereas OEM aims to maximize its profit by selling extended warranty (EW) services for multiple consumers. The issue of drawing a maintenance contract between OEM and hospitals has already been treated by adopting a Stackelberg’s game. However, the “as good as new” and “as bad as old” assumptions are usually considered, which are rather difficult to observe in practice, especially for healthcare institutions and their technology-intensive equipment. Thus, we here adopt generalized renewal processes (GRP) for modelling imperfect repairs, and we develop a discrete event simulation method for finding the best strategies of each player: OEM sets the prices for EW and on-demand maintenance that optimize its profit, while hospitals choose which option they should hire. We also present an application example with real data gathered from an angiography device, which is used for mapping blood vessels and diagnosing heart diseases.
PL
Ze względu na zaawansowanie technologiczne sprzętu medycznego, jego obsługą serwisową zazwyczaj zajmuje się producent sprzętu oryginalnego (OEM), co czyni go monopolistą w tym zakresie. Podczas gdy szpitalom zależy na wysokiej gotowości sprzętu przy rozsądnych kosztach obsługi, OEM dąży do maksymalizacji zysku poprzez sprzedaż rozszerzonej gwarancji na usługi serwisowe wielu klientom. Istnieją już badania, w których kwestię zawierania umowy o świadczenie usług serwisowych między OEM a szpitalami analizowano z zastosowaniem modelu Stackelberga. Jednak zwykle badania te zakładają, że stan po naprawie może być albo "jak fabrycznie nowy" albo"jak przed uszkodzeniem", co rzadko spotyka się w praktyce, zwłaszcza w przypadku placówek służby zdrowia i ich zaawansowanego technologicznie sprzętu. W związku z tym, w przedstawionej pracy, przyjęto uogólniony proces odnowy (GRP) do modelowania niepełnych napraw oraz opracowano metodę symulacji zdarzeń dyskretnych w celu znalezienia najlepszych strategii dla każdego gracza: OEM ustala ceny rozszerzonej gwarancji oraz konserwacji na żądanie, tak by zoptymalizować swój zysk; szpital natomiast ustala, którą opcję powinien wybrać. W pracy przedstawiono również przykład zastosowania omawianego podejścia z wykorzystaniem rzeczywistych danych zebranych z angiografu, który służy do obrazowania naczyń krwionośnych i diagnozowania chorób serca.
Wydawca

Rocznik
Strony
567--578
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • Center for Risk Analysis and Environmental Modeling – CEERMA Department of Production Engineering Universidade Federal de Pernambuco – UFPE Av. Prof. Moraes Rego, 1235 – University City Recife – PE – Brazil – 50670-901, joaomateusmsantana@gmail.com
  • Center for Risk Analysis and Environmental Modeling – CEERMA Department of Production Engineering Universidade Federal de Pernambuco – UFPE Av. Prof. Moraes Rego, 1235 – University City Recife – PE – Brazil – 50670-901, rafa.velozo@hotmail.com
  • Center for Risk Analysis and Environmental Modeling – CEERMA Department of Production Engineering Universidade Federal de Pernambuco – UFPE Av. Prof. Moraes Rego, 1235 – University City Recife – PE – Brazil – 50670-901, marcio@ceerma.org
autor
  • Center for Risk Analysis and Environmental Modeling – CEERMA Department of Production Engineering Universidade Federal de Pernambuco – UFPE Av. Prof. Moraes Rego, 1235 – University City Recife – PE – Brazil – 50670-901, isis.lins@ceerma.org
Bibliografia
  • 1. Amir R. Stackelberg versus Cournot Equilibrium 1999; 21: 1–21.
  • 2. Ashgarizadeh E, Murthy D N P. Service contracts: A stochastic model. Mathematical and Computer Modelling 2000; 31(10–12): 11–20, https://doi.org/10.1016/S0895-7177(00)00068-6.
  • 3. Bouguerra S, Chelbi A, Rezg N. A decision model for adopting an extended warranty under different maintenance policies. International Journal of Production Economics 2012, https://doi.org/10.1016/j.ijpe.2011.10.022.
  • 4. Çimen S, Gooya A, Grass M, Frangi A F. Reconstruction of coronary arteries from X-ray angiography: A review. Medical Image Analysis 2016; 32, https://doi.org/10.1016/j.media.2016.02.007.
  • 5. Cruz A M, Rincon A M R. Medical device maintenance outsourcing: Have operation management research and management theories forgotten the medical engineering community? A mapping review. European Journal of Operational Research 2012; 221(1): 186–197, https://doi.org/10.1016/j.ejor.2012.02.043.
  • 6. Darghouth M N, Ait-kadi D, Chelbi A. Joint optimization of design, warranty and price for products sold with maintenance service contracts. Reliability Engineering and System Safety 2017; 165: 197–208, https://doi.org/10.1016/j.ress.2017.03.033.
  • 7. Ding S H, Kamaruddin S. Maintenance policy optimization—literature review and directions. International Journal of Advanced Manufacturing Technology 2014; 76 (5–8): 1263–1283, https://doi.org/10.1007/s00170-014-6341-2.
  • 8. Esmaeili M, Shamsi Gamchi N, Asgharizadeh E. Three-level warranty service contract among manufacturer, agent and customer: A gametheoretical approach. European Journal of Operational Research 2014; 239 (1): 177–186, https://doi.org/10.1016/j.ejor.2014.04.045.
  • 9. Ferreira R J, Firmino P R A, Cristino C T. A mixed Kijima model using the Weibull-based Generalized Renewal Processes. PLoS ONE 2015; 10(7): 1–17, https://doi.org/10.1371/journal.pone.0133772.
  • 10. Forgó F, Szép J, Szidarovszky F. Introduction to the Theory of Games: Concepts, Methods, Applications. Springer 1999.
  • 11. Gibbons R. A Primer in Game Theory. A Primer in Game Theory 1992, https://doi.org/10.1017/CBO9780511791307.017.
  • 12. Guo R, Ascher H, Love E. Toward Pratical and Synthetical Modelling of Repairable Systems. Economic Quality Control 2001; 16(2): 147–182.
  • 13. Huang Y, Huang C, Ho J. A customized two-dimensional extended warranty with preventive maintenance. European Journal of Operational Research 2017; 257(3): 971–978, https://doi.org/10.1016/j.ejor.2016.07.034.
  • 14. Husniah H, Pasaribu U S, Iskandar B P. Service contract management with availability improvement and cost reduction. ARPN Journal of Engineering and Applied Sciences 2015; 10(1): 146–151.
  • 15. Jiang H, Pang Z, Savin S. Performance-Based Contracts for Outpatient Medical Services. Manufacturing & Service Operations Management 2012; 14(4): 654–669, https://doi.org/10.1287/msom.1120.0402.
  • 16. Jin T, Tian Z, Xie M. A game-theoretical approach for optimizing maintenance, spares and service capacity in performance contracting. International Journal of Production Economics 2015; 161: 31–43, https://doi.org/10.1016/j.ijpe.2014.11.010.
  • 17. Kijima M, Sumita U. A Useful Generalization of Renewal Theory : Counting Processes Governed by Non-Negative Markovian Increments. Journal of Applied Probability 1986; 23(1): 71–88, https://doi.org/10.2307/3214117.
  • 18. Kim S-H, Cohen M a., Netessine S, Veeraraghavan S. Contracting for Infrequent Restoration and Recovery of Mission-Critical Systems. Management Science 2010; 56(9): 1551–1567, https://doi.org/10.1287/mnsc.1100.1193.
  • 19. Lins I D, Droguett E L. Redundancy allocation problems considering systems with imperfect repairs using multi-objective genetic algorithms and discrete event simulation. Simulation Modelling Practice and Theory 2011; 19(1): 362–381, https://doi.org/10.1016/j.simpat.2010.07.010.
  • 20. Markets and Markets. Medical Equipment Maintenance Market by Device (Imaging (MRI, CT, PET, SPECT, X-ray, Ultrasound, C Arm), Endoscopy, ECG, EMG, Defibrillator, Dental, Ventilator), Service Provider (OEM, ISO, In house), End User (Public, Private) – Global Forecast to 2022. 2017. Retrieved from http://www.marketsandmarkets.com/Market-Reports/medical-equipment-maintenance-market69695102.html
  • 21. Marsaro M F, Cavalcante C A V. Random Preventive Maintenance Policy Based on Inspection for a Multicomponent System Using Simulation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2017; 19(4): 552–559, https://doi.org/http://dx.doi.org/10.17531/ein.2017.4.8.
  • 22. Moura M C, Droguett E L, Alves Firmino P R, Ferreira R J. A competing risk model for dependent and imperfect condition-based preventive and corrective maintenances. Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability 2014; 228(6): 590–605, https://doi.org/10.1177/1748006X14540878.
  • 23. Moura M C, Santana J M, Droguett E L, Lins I D, Guedes B N. Analysis of extended warranties for medical equipment: A Stackelberg game model using priority queues. Reliability Engineering & System Safety 2017; 168: 338–354, https://doi.org/10.1016/j.ress.2017.05.040.
  • 24. Murthy D N P, Asgharizadeh E. Optimal decision making in a maintenance service operation. European Journal of Operational Research 1999; 116(2): 259–273,https://doi.org/10.1016/S0377-2217(98)90202-8.
  • 25. Murthy D N P, Asgharizadeh E. a Stochastic Model for Service Contract. International Journal of Reliability, Quality and Safety Engineering 1998; 5(1): 29–45.
  • 26. Murthy D N P, Djamaludin I. New product warranty: A literature review. International Journal of Production Economics 2002; 79(3): 231–260, https://doi.org/10.1016/S0925-5273(02)00153-6.
  • 27. Murthy D N P, Jack N. Extended Warranties, Maintenance Service and Lease Contracts, https://doi.org/10.1007/978-1-4471-6440-1
  • 28. Murthy D N P, Yeung V. Modelling and analysis of maintenance service contracts. Mathematical and Computer Modelling 1995; 22(10–12): 219–225, https://doi.org/10.1016/0895-7177(95)00199-C.
  • 29. Oliveira C C F de, Cristino C T, Firmino P R A. In the kernel of modelling repairable systems: a goodness of fit test for Weibull-based generalized renewal processes. Journal of Cleaner Production 2016; 133: 358–367, https://doi.org/10.1016/j.jclepro.2016.05.123.
  • 30. Osborne M J, Rubinstein A. A Course in Game Theory. New York: The MIT Press, 1994.
  • 31. Pham H, Wang H. Imperfect maintenance. European Journal of Operational Research 1996; 94(3): 425-438, https://doi.org/10.1016/S0377-2217(96)00099-9.
  • 32. Rahman A, Chattopadhyay G. Review of long-term warranty policies. Asia-Pacific Journal of Operational Research 2006; 23(4): 453–472, https://doi.org/10.1142/S021759590600108X.
  • 33. Rinsaka K, Sandoh H. A stochastic model on an additional warranty service contract. Computers and Mathematics with Applications 2006; 51(2): 179–188, https://doi.org/10.1016/j.camwa.2005.11.024.
  • 34. Ross S M. Introduction to Probability Models. Academic Press 2014.
  • 35. Tanwar M, Rai R N, Bolia N. Imperfect repair modeling using Kijima type generalized renewal process. Reliability Engineering and System Safety 2014; 124: 24–31, https://doi.org/10.1016/j.ress.2013.10.007.
  • 36. Varian H R. Microeconomic Analysis. New York: W. W. Norton & Company, Inc, 1992.
  • 37. Wang H, Pham H. Reliability and Optimal Maintenance. Risk Management. Springer-Verlag London 1996, https://doi.org/10.1007/b138077
  • 38. Wang Z M, Yang J G. Numerical method for Weibull generalized renewal process and its applications in reliability analysis of NC machine tools. Computers and Industrial Engineering 2012; 63(4): 1128-1134, https://doi.org/10.1016/j.cie.2012.06.019.
  • 39. Yañez M, Joglar F, Modarres M. Generalized renewal process for analysis of repairable systems with limited failure experience. Reliability Engineering and System Safety 2002; 77(2): 167–180, https://doi.org/10.1016/S0951-8320(02)00044-3.
  • 40. Yang D, He Z, He S. Warranty claims forecasting based on a general imperfect repair model considering usage rate. Reliability Engineering & System Safety 2016; 145: 147–154, https://doi.org/10.1016/j.ress.2015.09.012.
  • 41. Ye Z S, Murthy D N P. Warranty menu design for a two-dimensional warranty. Reliability Engineering and System Safety 2016; 155: 21–29, https://doi.org/10.1016/j.ress.2016.05.013.
  • 42. Zio E. The Monte Carlo Simulation Method for System Reliability and Risk Analysis. Principles of Loads and Failure MechanismsApplications in Maintanence, Reliabilty and Design 2013, https://doi.org/10.1007/978-1-4471-4588-2.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-43142c44-0f41-441c-be5a-8b3c5b122d8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.