Józef Bajla, Maria Walczykova*, Martin Širba, Imrich Benda
Katedra mechaniki a strojnictwa
Słowacki Uniwersytet Rolniczy w Nitrze
* Katedra Eksploatacji Maszyn, Ergonomii i Podstaw Rolnictwa
Akademia Rolnicza w Krakowie

OCENA POZIOMEGO OPORU GLEBY,
Z WYKORZYSTANIEM TEORII PROCESÓW
STOCHASTYCZNYCH

Streszczenie

W doświadczeniach polowych z penetrometrem poziomym uzyskano przebiegi poziomego oporu gleby, do opracowania których zastosowano metody dynamiki statystycznej. Wyniki wykazały, że na mierzonych głębokościach widno wydajności było względnie niskie, co zostało również potwierdzone testem Fishera. Statystycznie istotnych jest kilka częstości, których wartość wała się w przedziale od 0,177 do 1,177 Hz. Na głębokości pomiaru 0,15 m aż siedem częstości o wartości 0,177-0,588 Hz jest statystycznie istotnych, a najbardziej częstość 0,196 Hz. Oceniane i omawiane przebiegi oporów penetracji oraz ich widma częstości mogą być wykorzystane jako parametry wstępne w metodach optymalizacji i racjonalizacji obliczeń oporów roboczych maszyn i narzędzi oraz ulepszeń ich konstrukcji. Metoda pomiaru oporu penetracji poziomym penetrometrem może być wykorzystana do szybkiego określania stanu gleby dla celów rolnictwa precyzyjnego oraz do prognozowania oporów roboczych narzędzi stosowanych w rolnictwie.

Słowa kluczowe: dynamika statystyczna, proces stochastyczny, opór penetracji, penetrometr poziomy

Wprowadzenie

Wpływ ciężkich maszyn, nieodpowiedniej agrotechniki oraz inne czynniki powodujące degradację, przyczyniają się co roku do wzrostu udziału gleb rolniczych o nieodpowiedniej strukturze. Zmiany klimatyczne oraz erozja wietrzna i wodna zjawisko to jeszcze bardziej pogłębiają. Wykorzystując znajomość podstawowych fizyko-mechanicznych właściwości gleby i sposobów ich pomiaru, Bajla i Balogh [2000]
opracowali metodę ciągłego pomiaru oporu penetracji penetrometrem poziomym, z zamiarem jej zastosowania do szybkiego określenia stanu gleby dla celów rolnictwa precyzyjnego oraz do prognozowania oporów roboczych narzędzi użytkowanych w rolnictwie.

Na podstawie doświadczeń polowych z wykorzystaniem penetrometru poziomego uzyskano przebiegi poziomego oporu gleby, do opracowania których zastosowano dynamikę statystyczną.

Material i metody

Zarejestrowane stochastyczne przebiegi mierzonych wielkości analizowano poprzez obliczenie wybranych charakterystyk statystycznych procesu w taki sposób, aby w razie potrzeby w warunkach laboratoryjnych możliwa była ich symulacja. Wykonano:
- obliczenie parametrów statystycznych (wartość średnia, rozproszenie, miara odchyleń),
- testowanie stacjonarności procesu stochastycznego,
- obliczenie funkcji autokorelacji,
- obliczenie gęstości widma,
- testowanie istotności statystycznej częstotliwości objętych w badanym procesie stochastycznym (test Fishera),
- graficzne przedstawienie wyników obróbki.

Po wprowadzeniu zbiorów dyskretyzowanych parametrów do komputera, za pomocą jednozadaniowych programów określone zostały następujące wielkości:
Średnia wartość zależy od czasu

\[m_p(t_i) = \frac{1}{N_i} \cdot \sum_{i=1}^{N_i} p(i) \]

gdzie: \(p \) przedstawia zmierzone wartości oporu penetracji, \(N_i = \frac{N}{I} \) jest długością wybranego przedziału, \(N \) jest liczbą opracowywanych wartości \(p \), zaś \(I \) odpowiada liczbie wartości wybranego przedziału.

Środkowe wartości procesu

\[p^0(i) = p(i) - m_p(t_i) \]

Rozproszenie przypadkowej wielkości

\[D(p) = \int_{-\infty}^{\infty} (p - m_p)^2 f(p) dp \]

gdzie: \(f(p) \) jest funkcją gęstości prawdopodobieństwa procesu stochastycznego.

Miarodajne odchylenie przypadkowej wielkości

\[\sigma_p = \sqrt{D(p)} \]

Po obliczeniu podstawowych charakterystyk statystycznych konieczne było sprawdzenie stacjonarności procesu, ewentualnie jej braku, za pomocą odpowiednich testów. Do oceny stacjonarności procesu w ramach teorii korelacji wystarczyło wziąć pod uwagę wartość średnią, rozproszenie i funkcję autokorelacji. Proces jest stacjonarny wówczas, gdy średnia wartość i rozproszenie są stałe na całej długości procesu podlegającej ocenie i funkcja autokorelacji zależy tylko od różnicy czasowych \(r = t_f - t_i \). Przesunięcie \(r \), które jest argumentem funkcji korelacyjnych jest zróżnicowane w długości całkowitych iloczynów okresu próbkowania \(\Delta t \)

\[r = r \Delta t, \quad (r = 0, 1, 2, \ldots, m), \]

gdzie w rozważanym przypadku \(\Delta t = 0,0025 \) s, a maksymalne przesunięcie \(m \) nie powinno przekraczać 10% długości realizacji \(n \), tzn. \(m \leq 0,1n \).

Ocena stacjonarności procesu przebiegała następująco:

- proces stochastyczny został podzielony na jednakową liczbę odcinków i dla każdego z nich obliczono średnią wartości oraz rozproszenia,
dla otrzymania ciągu liczbowego średnich wartości oraz rozproszeń zastosowa-
nio nieparametryczny test trendu oraz test iteracyjny i oceniono istotność sta-
tyczną ich różnic na poziomie istotności \(P = 5\% \).

Funkcja autokorelacji dla ustalonych wartości dyskretnych ma kształt:

\[
R_p(r) = \frac{1}{N - r} \sum_{n=1}^{N-r} p^o(n) \cdot p^o(n + r)
\]

gdzie: \(r = 0, 1, 2, \ldots, m \).

Gęstość widma jest zdefiniowana niżej podaną podstawową zależnością:

\[
S_p(\omega) = \int_0^\infty R_p(\tau) \cos \omega \tau \, d\tau
\]

gdzie: \(\omega \) przedstawia częstotliwość kątową \(\omega = 2\pi f \).

Przekształceniem uzyskano zależność (7), odpowiednią do stosowania w algorytmie obliczeń.

\[
S_p\left(\frac{\pi \cdot l}{m \cdot \Delta l}\right) = \frac{\Delta l}{\pi} \left[R_p(0) + 2 \sum_{r=1}^{m-1} R_p(\tau) \cos \frac{\pi \cdot l}{m} \cdot r + R_p(m) \cos(\pi \cdot l) \right]
\]

gdzie: \(l = 0, 1, 2, \ldots, m \).

Tak opracowane funkcje deterministyczne będą wizualizowane graficznie i ocenio-
ne z punktu widzenia stacjonarności, jak też siły oraz istotności wydajności widma
w zależności od znaczących częstotliwości.

Statystyczna istotność ustalonych częstotliwości była potwierdzona testem Fishera.
Punktem wyjścia dla analizy statystycznej był periodogram, zdefiniowany funkcją
\(I(\lambda) \) (8).

\[
I(\lambda) = \frac{1}{2\pi} \left| \sum_{r=1}^{N} p_r e^{-i\lambda r} \right|^2, \quad -\pi \leq \lambda \leq \pi
\]

gdzie: \(\lambda = 2\pi r/N, \quad r = 1, 2, \ldots, n \).

Po przekształceniu otrzymano:

\[
I(\lambda) = \frac{1}{2\pi} \left(c_0 + 2 \sum_{k=1}^{N-1} C_k \cos k\lambda \right),
\]
gdzie: \(C_k = \frac{1}{N} \sum_{t=1}^{N-k} p_t \ (p_t + k), \quad k = 0, 1, \ldots, N - 1 \) \hfill (9)

Warunki pomiarów

Pomiary doświadczalne dynamicznego oporu penetracji pozwoliły na szybkie określenie stanu gleby na różnych jej poziomach. Wykonano je za pomocą prototypu poziomego penetrometru (rys. 1), zaprojektowanego przez Bajłę i Balogha [2002].

Rys. 1. Model penetrometru poziomego
Fig. 1. Model of the horizontal penetrometer

Do konstrukcji penetrometru poziomego użyto standardowego kształtu i wymiarów stożka wg normy ASAE 313.2 z następującymi parametrami:
- kąt wierzchołka stożka \(30^\circ \)
- powierzchnia podstawy \(3,24 \text{ cm}^2 \)
- średnica stożka \(20,3 \text{ mm} \)

Penetrometr poziomy umieszczono na ramie nośnej, zawieszonej na trzypunktowym układzie zawieszenia ciągnika Zetor 7011.

Układ pomiarowy zaproponowany przez Bajłę [2003] składał się z następujących elementów:
- piezoelektryczny czujnik pomiaru siły oporu penetrometru,
- przedwzmacniacz typu RTF 00 042,
- karta oscyloskopowa NI-DAQCard-AI-16E-4,
- notebook Leo 5200 200MHz, 6 GB HDD.
Ciągły pomiar oporu penetracji gleby w kierunku poziomym wykonano na doświadczalnych polach uprawnych Słowackiego Uniwersytetu Rolniczego. Gleba odznaczała się następującymi właściwościami:
- gęstość właściwa $= 2.51 \text{ g} \cdot \text{cm}^{-3}$
- średnia wilgotność $= 25,23 \%$ wag.
- gęstość objętościowa $= 1,25 + 1,72 \text{ g} \cdot \text{cm}^{-3}$
- typ gleby: brunatna, ciężka, ilasta.

Rys. 2. Opór penetracji oraz charakterystyki procesu stochastycznego (głębokość $0,15 \text{ m}$)

Fig. 2. Penetration resistance and the stochastic process characteristics (depth $0,15 \text{ m}$)
Pomiary wykonano na głębokościach 0,10; 0,15 oraz 0,20 m. Przebiegi oporów penetracji po wstępnej obróbce były opracowane za pomocą specjalistycznych programów komputerowych (do filtracji, do określenia podstawowych parametrów deterministycznych przypadkowego zdarzenia itp.)

Wyniki i dyskusja

W opracowaniu podano przebieg oporu penetracji, jak również pozostałe charakterystyki procesu stochastycznego dla głębokości 0,15 m (rys. 2). Za pomocą testu stacjonarności stwierdzono, że badany proces jest stacjonarny w zakresie średniej wartości i rozproszenia, o czym świadczy również histogram rozkładu liczebności średnich oporów penetracji do zdefiniowanych klas. Jego przebieg jest bliski rozkładowi normalnemu.

Funkcja autokorelacji charakteryzuje kształt widma obciążenia w czasie i na podstawie jej przebiegu można stwierdzić, że chodzi o proces wąskopasmowy z niską częstotliwością. Niskie wartości dominandy częstotliwości wskazują na brak istotności mieszanych częstotliwości. Analiza częstotliwości omawianego procesu jest przedstawiona za pomocą gęstości widma oraz odpowiadającym jej periodogramem. Gęstość widma jest stosunkowo niska, co zostało potwierdzone testem Fishera (tab. 1). Istotnych jest ogółem 7 częstotliwości, których wartości znajdują się w przedziale 0,177-1,177 Hz.

Tabela 1. Wyniki testu Fishera – głębokość 0,15 m

<table>
<thead>
<tr>
<th>j</th>
<th>λ(j)</th>
<th>T(j)</th>
<th>t(λj)10^6</th>
<th>W</th>
<th>W_kryt</th>
<th>Częstotliwość</th>
<th>Kolejność</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,00308</td>
<td>2039,500</td>
<td>1498842,63</td>
<td>0,1634</td>
<td>0,0060</td>
<td>0,1961</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0,00770</td>
<td>815,800</td>
<td>518257,78</td>
<td>0,0675</td>
<td>0,0060</td>
<td>0,4903</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0,00924</td>
<td>679,833</td>
<td>211714,67</td>
<td>0,0296</td>
<td>0,0060</td>
<td>0,5884</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0,01232</td>
<td>509,875</td>
<td>198243,33</td>
<td>0,0286</td>
<td>0,0060</td>
<td>0,7845</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0,00616</td>
<td>1019,750</td>
<td>132269,16</td>
<td>0,0196</td>
<td>0,0060</td>
<td>0,3923</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>0,01848</td>
<td>339,917</td>
<td>53610,10</td>
<td>0,0081</td>
<td>0,0060</td>
<td>1,1768</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0,01078</td>
<td>582,714</td>
<td>51055,04</td>
<td>0,0078</td>
<td>0,0060</td>
<td>0,6864</td>
<td>7</td>
</tr>
</tbody>
</table>
Podsumowanie

Do opracowania zarejestrowanych przebiegów poziomych oporów penetracji gleby zastosowano metody dynamiki statystycznej. Oceniane i analizowane przebiegi oporów penetracji oraz ich widma częstotliwości mogą być wykorzystane jako parametry wejściowe w racjonalizacji i optymalizacji konstrukcji maszyn i narzędzi. Metoda pomiaru oporu penetracji penetrometrem poziomym może być wykorzystana do szybkiego określania stanu gleby dla celów rolnictwa precyzyjnego, jak również w prognozowaniu oporów roboczych narzędzi stosowanych w rolnictwie.

Bibliografia

THE EVALUATION OF THE HORIZONTAL SOIL RESISTANCE WITH AN APPLICATION OF STOCHASTIC PROCESS THEORY

Summary

In the field experiment with horizontal penetrometer the courses of horizontal soil resistance were obtained and then evaluated by the help of statistical dynamics method. The results of analyses showed that at the measured depths the power of the spectrum was relatively low, which was confirmed by the Fisher’s test. There were some significant frequencies. Their intensity fell into an interval 0.177, 1.177 Hz. At the depth of 0.15 m as many as seven frequencies, varying from 0.177 Hz to 0.588 Hz, were statistically significant, among them the frequency of 0.196 Hz in the highest degree. Evaluated and described courses of penetration resistance and their frequency spectra, could be used as entrance parameters for rationalizing and optimizing the working resistance calculation of tools and machines as well as and for modification of their design. The method of penetration resistance measurement by horizontal penetrometer could be used for quick determination of the soil conditions for the purpose of precision agriculture and for prediction of the working resistance of the equipment used in agriculture.

Key words: statistical dynamics, stochastic processes, soil resistance, horizontal penetrometer