PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 44, no. 1 | 48--54
Tytuł artykułu

Extraction, growth and immobilization of Yarrowia lipolytica yeast cells for dye effluent treatment

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The removal of organic dyes from industrial wastewater remains a problem, both technically and economically. In this study, Yarrowia lipolytica yeast cells were isolated from poultry meat and immobilized using alginate. The immobilized Yarrowia lipolytica yeast was used as biosorbent to remove methylene blue (MB) dye from synthetic effluent water. The results show that maximum adsorption capacity under optimum conditions was 66.67 mg∙g-1. The equilibrium adsorption data fitted well onto the Freundlich adsorption isotherms with R2>0.99. Adsorption kinetics was of pseudo-second order process suggesting that the adsorption was a chemisorption. FTIR spectra identified typical absorption bands of a biosorbent. Sorption of MB dye on Yarrowia lipolytica yeast cells was exothermic with weak sorption interaction.
Wydawca

Rocznik
Strony
48--54
Opis fizyczny
Bibliogr.37 poz., tab., wykr.
Twórcy
autor
autor
  • Bindura University of Science Education, Zimbabwe, Department of Chemistry
autor
  • Bindura University of Science Education, Zimbabwe, Department of Biological Sciences
Bibliografia
  • 1. Ahmad, A., Rafatullah, H., Sulaiman, O., Ibbrahim, M.H. & Hashim, R. (2009). Scavenging behavior of meranti saw dust in the removal of methylene blue from aqueous solution, Journal of Hazardous Materials, 170, pp. 357–365.
  • 2. Babu, B.R., Parande, A.K. Raghu, & Kumar, T.P. (2007). Cotton textile processing: waste generation and effluent treatment, The Journal of Cotton Science, 11, pp. 110–122.
  • 3. Barka, N., Abdennouri, M. & Makhfouk, M.E. (2011). Removal of methylene blue and eriochrome black T from aqueous solutions by biosorption on Scolymus hispannicus L.: kinetic, equilibrium and thermodynamics, Journal of the Taiwan Institute of Chemical Engineers, 42, pp. 320–326.
  • 4. Berger, J.C., Fisher, B., Samy, R., Pollack, S., Wang, N.S. & Isayeva, I. (2015). Synthesis of “click” alginate hydrogel capsules and comparison of their stability, water swelling, and diffusion properties with that of Ca2+ crosslinked alginate capsules, Journal of Biomedical Materials Research: Part B, Applied Biomaterias, 103B, pp. 1120–1132.
  • 5. Bulut, Y. & Aydin, H. (2006). A kinetic and thermodynamics study of methylene blue adsorption on wheat shells, Desalination, 194, pp. 259–267.
  • 6. Caparkaya, D. & Cavas, L. (2008). Biosorption of methylene blue by a brown alga Cystoseira barbatula Kützing, Acta Chimica Slovenica, 55, pp. 547–553.
  • 7. Chander, M. & Arora, D.S. (2007). Evaluation of some white-rot fungi for their potential to decolorize industrial dyes, Dyes and Pigments, 72, pp. 192–198.
  • 8. Chen, C.K., Wu, J.Y., Liou, D.L. & Hwang, C.J. (2003). Decoloration of the textile dyes by newly isolated bacterial strains, Journal of Biotechnology, 101, pp. 57–68.
  • 9. Choudhary, P., Singh, J. & Subramanian, S. (2014). Investigation on biosorption of acidic dye from an aqueous solution by marine bacteria, Planococcus sp. VITP21, International Journal of Chem Tech Research, 6(11), pp. 4755–4763.
  • 10. Dabrowski, A. (2001). Adsorption – From theory to practice, Advances in Colloid and Interface Science, 93, pp. 135–224.
  • 11. Djordjevic, D., Stojiljkovic, D. & Smelcerovic, M. (2014). Adsorption kinetics of reactive dyes on ash from town heating plant. Archives of Environmental Protection, 4(3), pp. 123–135. DOI:10.2478/aep-2014-0024.
  • 12. Dogan, N.M., Sensoy, T., Doganli, G.A., Bozboyoglu, N.N., Arar, D., Arkdogan, H.A. & Canpolat, M. (2016). Immobilization of Lycinibacilus fusiforms B26 cells in different matrices for use in turquoise blue HFG declourization. Archives of Environmental Protection, 42(2), pp. 92–99. DOI: 10.1515/aep-2016-0013.
  • 13. Dragan, E.S. & Loghin, D.F.A. (2013). Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix, Chemical Engineering Journal. Doi:10.1016/j.cej.2013.08.081
  • 14. El Jamal, M.M. & Ncibi, M.C. (2012). Biosorption of methylene blue by Chaetophora elegans algae: Kinetics, equilibrium and thermodynamic studies, Acta Chimica Slovenica, 59, pp. 24–31.
  • 15. Elass, K., Laachach, A., Alaoui, A. & Azzi, M. (2010). Removal of methylene blue from aqueous solution using ghasssoul, A low cost adsorbent, Applied Ecology and Environmental Research, 8, 2, pp. 153–163.
  • 16. Gadd, G.M. (2009). Biosorption: A critical review of scientific rational, environmental importance and significance for pollution treatment, Journal of Chemical Technology and Biotechnology, 84, pp. 13–28.
  • 17. Itodo, A.U., Abdulrahman, F.W., Hassan, L.G., Maigandi, S.A. & Happiness, U.O. (2009b). Thermodynamic equilibrium, kinetics and adsorption mechanism of industrial dye removal by chemically modified poultry droppings activated carbon, Nigerian Journal of Basic and Applied Sciences, 17(1), pp. 38–43.
  • 18. Mareno-Garrido, I. (2008). Microalgae immobilization: The current techniques and uses, Bioresource Technology, 99, pp. 3949–3964.
  • 19. Mirbagheri, M., Nahvi, I., Emtiazi, G., Mafakher, L. & Darvishi, F. (2012). Taxonomic characterization and potential biotechnological applications of Yarrowia lipolytica isolated from meat and meat products, Jundishapur Journal of Microbiology, 5(1), pp. 346–351. Doi: 10.5812/kowsar.20083645.2433.
  • 20. Murali, K. & Uma, N. (2006). Removal of basic dye (methylene) using low cost biosorbent: water hyacinth, International Journal of Advanced Engineering Technology, 7(2), pp. 386–391.
  • 21. Muzarabani, N., Mupa, M., Gwatidzo, L. & Machingauta, C. (2015). Silica gel immobilized Chlorophyta hydrodictyon africanum for the removal of methylene blue from aqueous solutions: Equilibrium and kinetic studies, African Journal of Biotechnology, 14(31), pp. 2463–2471.
  • 22. Nsami, J.N. & Mbadcam, J.K. (2013). The adsorption efficiency of chemically prepared activated carbon from cola nut shells by ZnCl2 on methylene blue, Journal of Chemistry, Article ID 469170.
  • 23. Ong, S.T., Keng, P.S., Lee, S.L., Leong, M.H. & Hung, Y.T. (2010). Equilibrium studies for the removal of basic dye by sun flower seed husks (Helianthus annuus), International Journal of Physical Sciences, 5(8), pp. 1270–1276.
  • 24. Ong, S.T., Keng, P.S., Lee, W.N., Ha, S.T. & Hung, Y.T. (2011). Dye waste treatment, Water, 3, pp. 157–176.
  • 25. Pavan, F.A., Lima, E.C., Dias, S.L.P. & Mazzacato, A.C. (2008). Methylene blue biosorption from aqueous solutions by yellow passion fruit waste, Journal of Hazardous Materials, 150, pp. 703–712.
  • 26. Rajaram, T. & Das, A. (2008). Water pollution by industrial effluents in India: Discharge scenarios and use for participatory ecosystem specific local regulations, Futures, 40, pp. 56–69.
  • 27. Rubin, E., Rodriques, P., Herrero, R., Cremades, J., Barbara, I. & Vicente, M.E.S. (2005). Removal of methylene blue from aqueous solutions using as biosorbent Sargassum muticum: an invasive macroalga in Europe, Journal of Chemical Technology and Biotechnology, 80, pp. 29–298.
  • 28. Soni, M., Sharma, A.K. & Srivastav, J.K. (2012). Adsorpitve removal of methylene blue dye from an aqueous solution using water hyacinth root powder as a low cost adsorbent, International Journal of Chemical Sciences and Applications, 3, pp. 338–345.
  • 29. Tsai, W.T., Hsu, H.C., Su, T.Y. & Lin, K.Y. (2008). Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste, Journal of Hazardous Materials, 154, pp. 73–78.
  • 30. Unal, G., Gulce, O. & Gizem, C.G. (2013) Removal of methylene blue from aqueous solution by activated carbon prepared from Pea shells (Pislum sativam), Journal of Chemistry, 3, Article ID 614083.
  • 31. Unuabonah, E.I., Adebowale, K.O., Olu-Owolabi, B.I., Yang, L.Z. & Kong, L.X. (2008). Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate modified kaolinite clay: equilibrium and thermodynamic studies, Hydrometallurgy, 93, pp. 1–9.
  • 32. Vadivelan, V. & Kumar, K.V. (2005). Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, Journal of Colloid and Interface Science, 286(1), pp. 90–100.
  • 33. Vijayakumar, G., Tamilarasan, R. & Dharmendirakumar, M. (2012). Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye rhodamine-B from aqueous solution by the use of natural adsorbent perlite, Journal of Materials and Environmental Science, 3(1), pp. 157–170.
  • 34. Yan, T. & Wang, L. (2013). Adsorptive removal of methylene blue from aqueous solution by spent mushroom substrate: equilibrium, kinetics and thermodynamics, Bio Resources, 8(2), pp. 4722–4734.
  • 35. Yao, Z., Wang, L. & Qi, J. (2009). Biosorption of methylene blue from aqueous solution using a bioenergy forest waste: Xanthoceras sorbifolia seed, Clean, 37(8), pp. 642–648.
  • 36. Yesiladali, S.K., Perkin, G., Bermek, H., Arslan-Alaton, I, Orhon, D. & Termeler, C. (2006). Bioremediation of textile azo dye by Trichophyton rubrum LSK-27, World Journal Microbiology and Biotechnology, 22, pp. 1027–1031.
  • 37. Zou, H., Ma, W. & Wang, Y. (2015). A novel process of dye wastewater treatment by linking advanced chemical oxidation with biological oxidation, Archives of Environmental Protection, 41(4), pp. 33–39. DOI: 10.1515/aep/-2015-0037
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3efbfba9-f1e8-47db-8b32-8df941dc8cf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.