THE FUZZY SYSTEM FOR RECOGNITION AND CONTROL OF THE TWO PHASE GAS-LIQUID FLOWS

Pawel Fiderek, Radoslaw Wajman, Jacek Kucharski

Lodz University of Technology, Institute of Applied Computer Science

Abstract. In this article the fuzzy system for the two phase gas-liquid flows recognition based on the 3D tomography data and the research facility context information is described. The system is also specialized to control the research facility in basis of the fuzzy algorithms and generated diagnostics signals.

Keywords: fuzzy logic, electrical capacitance tomography, fuzzy inference, two phase gas-liquid flows recognition

ROZMYTY SYSTEM ROZPOZNAJĄCY I STERUJĄCY PRZEPŁYWAMI DWUFAZOWYMI MIESZANIN GAZ-CIECZ

Streszczenie. W artykule opisano system rozpoznania przepływów dwufazowych mieszanin gaz-ciecz na podstawie danych tomograficznych oraz informacji kontekstowej. System ma możliwość sterowania pracą laboratorium w bazie algorytmów rozmytych i wygenerowanych sygnałów diagnostycznych.

Słowa kluczowe: logika rozmyta, elektryczna tomografia pojemnościowa, wnioskowanie rozmyte, rozpoznawanie przepływów dwufazowych mieszanin gaz-ciecz

Introduction

The two phase gas-liquid flows (example two phase gas-liquid flow is presented in figure 1), recognition still determines the growing trend in the various branches of the industry. The knowledge about the flow regime in the research or industrial set-up has a great importance in a biotechnology, liquid engineering, power plant facilities, heating industry etc.

The recognition of the two phase gas-liquid flows is a well-known problem in a computer science. There are various recognition methods for based on the pattern recognition [6], image processing [2], image reconstruction [8] and even artificial intelligence [4]. Despite of the severity of the above methods, the human expert opinion is still the most important part of the two phase gas liquid flows recognition process. Hence, the use of fuzzy logic which in its concepts imitates the human expert inference process. The methodology described in this paper is an innovative solution considering the raw 3D ECT data and the flow context information combined into common fuzzy inference.

The wide description of the flow similarity determination based on the raw 3D ECT data can be found in the authors previous publication [3]. Shortly, the flow similarity is a result of the fuzzy c-means algorithm that describes the level of the similarity of the investigated flow to the pattern flows.

The gas and the liquid flow rate are the values obtained from the research installation measurement system. Due to the relatively low accuracy of the measuring system and the frequent oscillations, these values can't be threaten as a crisp values. To reduce the impact of the mentioned factors for the final recognition results the authors decided to threat the input values of the gas flow rate and the liquid flow rate as a fuzzy number [10]. The fuzzy number that describes the input value can be interpreted as “about the value”, and it is expressed by the following membership functions:

- For the gas flow rate (values expressed in m³/h):

\[
\mu_{\text{LFR}}(x) = \begin{cases}
0 & x \leq \bar{x}_m - 1 \\
0 & x \geq \bar{x}_m + 1 \\
\frac{x - (\bar{x}_m - 1)}{(\bar{x}_m + 1) - (\bar{x}_m - 1)} & \bar{x}_m - 1 < x < \bar{x}_m + 1
\end{cases}
\]

where: \(\bar{x}_m \) is an average value of the liquid flow rate measured during 15-second period;

- For the liquid flow rate (values expressed in m³/h):

\[
\mu_{\text{LFR}}(x) = \begin{cases}
0 & x \leq \bar{x}_m - 0.5 \\
0 & x \geq \bar{x}_m + 0.5 \\
\frac{2x - 2(\bar{x}_m - 0.5)}{(\bar{x}_m + 0.5) - (\bar{x}_m - 0.5)} & \bar{x}_m - 0.5 < x < \bar{x}_m + 0.5
\end{cases}
\]

where: \(\bar{x}_m \) is an average value of the liquid flow rate measured during 15 seconds.

1. Recognition module

1.1. Data preparation

First step in the two phase flow recognition is a data preparation. On the fuzzy inference input there are three values:

- flow similarity,
- gas flow rate,
- liquid flow rate.

Fig. 1. The plug flow

Fig. 2. About 5 m³/h fuzzy number graphical representation

The time of 15 second is the time also needed to determination of the flow similarity level [3] so it does not affect the time of the final results calculation.
The second step of the research was to determine of the membership function needed in the input values fuzzyfication. The membership functions presented in the fig. 4, fig. 5 and fig. 6. In the figure 4 dark blue color means “different from...”, red color means “low similarity to the...”; green color means "medium similarity to the...”; purple color means "high similarity to the...”; light blue means “identical to the...”. The membership functions shapes were determined due to the authors opinion and the human expert experience. The membership functions presented in figure 4 are expressed by the following formulas:

\[
\mu_{\text{different from}}(x) = \begin{cases}
1 & \text{if } x \leq 0.1 \\
-5x + 1.5 & \text{if } x \in (0.1; 0.3) \\
0 & \text{if } x \geq 0.3
\end{cases}
\]
(3)

\[
\mu_{\text{low similar to the}}(x) = \begin{cases}
5x - 0.5 & \text{if } x \in (0.1; 0.3) \\
-5x + 2.5 & \text{if } x \in (0.3; 0.5) \\
0 & \text{if } x \geq 0.5 \\
0 & \text{if } x \leq 0.3
\end{cases}
\]
(4)

\[
\mu_{\text{medium similar to the}}(x) = \begin{cases}
5x - 1.5 & \text{if } x \in (0.3; 0.5) \\
1 & \text{if } x = 0.5 \\
-5x + 3.5 & \text{if } x \in (0.5; 0.7) \\
0 & \text{if } x \geq 0.7 \\
0 & \text{if } x \leq 0.5
\end{cases}
\]
(5)

\[
\mu_{\text{high similar to the}}(x) = \begin{cases}
5x - 2.5 & \text{if } x \in (0.5; 0.7) \\
1 & \text{if } x = 0.7 \\
-5x + 4.5 & \text{if } x \in (0.7; 0.9) \\
0 & \text{if } x \geq 0.9 \\
0 & \text{if } x \leq 0.7
\end{cases}
\]
(6)

\[
\mu_{\text{identical to the}}(x) = \begin{cases}
5x - 3.5 & \text{if } x \in (0.7; 0.9) \\
1 & \text{if } x \geq 0.9
\end{cases}
\]
(7)

The membership functions of the gas and the liquid flow rate preliminary shapes were determined due to the set of test data presented in figure 7 clustering. The final shapes were determined due to the human expert comments consideration. The final shapes of the gas and the liquid flow rates are presented in the figure 5 and figure 6. The gas and the liquid flow rates fuzzy variables were divided into four terms:

- low flow rate,
- medium low flow rate,
- medium high flow rate,
- high flow rate.

The membership functions presented in the figure 5 are expressed by following formulas (values expressed in m³/h):

\[
\mu_{\text{gas}}(x) = \begin{cases}
-2x + 8.5 & \text{if } x \in (3.75; 4.25) \\
0 & \text{if } x \geq 4.25 \\
0 & \text{if } x \leq 3.75
\end{cases}
\]
(18)

\[
\mu_{\text{liquid}}(x) = \begin{cases}
2x - 11.5 & \text{if } x \in (3.5; 4.5) \\
0 & \text{if } x \geq 5.75 \\
0 & \text{if } x \leq 3.5
\end{cases}
\]
(19)

The function shape for a parameter equals 1 and 10 was also consulted and approved by the human expert in the two phase gas-liquid flows recognition.
The defuzzification is realized by the standard maximum rule [10].

\[
\max\{\min\{a,b\}, 1-a\} \quad (28)
\]

2. Control module

2.1. Data preparation

In the fuzzy inference for the control module there are four input values:

- gas flow rate,
- liquid flow rate,
- current flow type,
- given flow type.

The gas flow rate and the liquid flow rate values are fuzzyfied exactly the same as the input signals in recognition module, applying the membership functions presented in the fig. 5 and 6. The current flow and the given flow types have crisp values, where the current flow type is the defuzzyfied result of the recognition module and the given flow is the system user assessment.
2.2. Control process

The fuzzy rules used in the control module look as follows:

If Current flow type is slug/plug/transitional
And Given flow type is slug/plug/transitional
And Gas flow rate is low/medium low/medium/medium high/high
Then Liquid flow rate is low/medium low/medium/medium high/high

Set gas flow rate to low/medium low/medium/medium high/high
And Set liquid flow rate to low/medium low/medium/medium high/high

All used in the studies fuzzy control rules are presented in table 2.

Table 2. Recognition fuzzy rules base

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Current flow type</th>
<th>Given flow type</th>
<th>Gas flow rate</th>
<th>Liquid flow rate</th>
<th>Result gas flow rate</th>
<th>Result liquid flow rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plug</td>
<td>T</td>
<td>Low</td>
<td>Low</td>
<td>ML</td>
<td>Low</td>
</tr>
<tr>
<td>2</td>
<td>Plug</td>
<td>T</td>
<td>Low</td>
<td>ML</td>
<td>ML</td>
<td>ML</td>
</tr>
<tr>
<td>3</td>
<td>Plug</td>
<td>T</td>
<td>Low</td>
<td>MH</td>
<td>ML</td>
<td>MH</td>
</tr>
<tr>
<td>4</td>
<td>Plug</td>
<td>T</td>
<td>Low</td>
<td>High</td>
<td>ML</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>Plug</td>
<td>ML</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>Plug</td>
<td>ML</td>
<td>Low</td>
<td>ML</td>
<td>ML</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>Plug</td>
<td>ML</td>
<td>MH</td>
<td>Low</td>
<td>MH</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>Plug</td>
<td>ML</td>
<td>High</td>
<td>Low</td>
<td>MH</td>
</tr>
<tr>
<td>9</td>
<td>T</td>
<td>Plug</td>
<td>MH</td>
<td>Low</td>
<td>ML</td>
<td>MH</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>Slug</td>
<td>Low</td>
<td>Low</td>
<td>MH</td>
<td>Low</td>
</tr>
<tr>
<td>11</td>
<td>T</td>
<td>Slug</td>
<td>Low</td>
<td>ML</td>
<td>MH</td>
<td>Low</td>
</tr>
<tr>
<td>12</td>
<td>T</td>
<td>Slug</td>
<td>Low</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>13</td>
<td>Plug</td>
<td>Slug</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>14</td>
<td>Slug</td>
<td>Plug</td>
<td>MH</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>15</td>
<td>Slug</td>
<td>Plug</td>
<td>MH</td>
<td>MH</td>
<td>Low</td>
<td>MH</td>
</tr>
<tr>
<td>16</td>
<td>Slug</td>
<td>Plug</td>
<td>MH</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>17</td>
<td>Slug</td>
<td>Plug</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>18</td>
<td>Plug</td>
<td>Slug</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>19</td>
<td>Plug</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>Low</td>
<td>MH</td>
</tr>
<tr>
<td>20</td>
<td>Slug</td>
<td>Slug</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>21</td>
<td>T</td>
<td>Slug</td>
<td>Low</td>
<td>Low</td>
<td>MH</td>
<td>Low</td>
</tr>
<tr>
<td>22</td>
<td>T</td>
<td>Slug</td>
<td>Low</td>
<td>ML</td>
<td>MH</td>
<td>Low</td>
</tr>
<tr>
<td>23</td>
<td>T</td>
<td>Slug</td>
<td>Low</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>24</td>
<td>T</td>
<td>Slug</td>
<td>Low</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>25</td>
<td>T</td>
<td>Slug</td>
<td>Low</td>
<td>MH</td>
<td>MH</td>
<td>Low</td>
</tr>
<tr>
<td>26</td>
<td>T</td>
<td>Slug</td>
<td>Low</td>
<td>MH</td>
<td>MH</td>
<td>Low</td>
</tr>
<tr>
<td>27</td>
<td>T</td>
<td>MH</td>
<td>Low</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>28</td>
<td>T</td>
<td>MH</td>
<td>Low</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>29</td>
<td>T</td>
<td>MH</td>
<td>High</td>
<td>Low</td>
<td>MH</td>
<td>Low</td>
</tr>
<tr>
<td>30</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>31</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>32</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>33</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>34</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>35</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>36</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>37</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>38</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>39</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>40</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>41</td>
<td>T</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>42</td>
<td>Slug</td>
<td>Slug</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>43</td>
<td>Slug</td>
<td>Slug</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>44</td>
<td>Slug</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>45</td>
<td>Slug</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>46</td>
<td>Slug</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>47</td>
<td>Slug</td>
<td>Slug</td>
<td>High</td>
<td>MH</td>
<td>MH</td>
<td>MH</td>
</tr>
<tr>
<td>48</td>
<td>Slug</td>
<td>Slug</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

The output values are translated to the crisp values with the center of sums defuzzification method, expressed by the following formula:

$$\bar{y} = \frac{\int_{a}^{b} y \sum_{i=1}^{N} \mu_{A_i}(y) dy}{\int_{a}^{b} \sum_{i=1}^{N} \mu_{A_i}(y) dy}$$ \hspace{1cm} (29)

where: \(y \) – value of each point covered by the output fuzzy set expressed in m³/h

Finally, the two parameters are produced on the control module output:
- the setting of the gas flow rate expressed in m³/h,
- the setting of the liquid flow rate expressed in m³/h.

3. Research results

The results of the recognition process correctness was validated with 45 test flows. In the first step, each test flow type was recognized both by the human expert and the presented system. The results for each from three flow type are presented in table 3. The results of the control process are presented in table 4.

In table 3 the flows types are marked by the following symbols:
- P – for the plug flow,
- T – for the transitional flow,
- S – for the slug flow.

The flows recognized by the presented system were validated by the human expert. The differences in the flows recognition results were marked in red color. As it can be noticed there were only 3 differences in 45 test flows (2 in plug flow recognition and one in transitional flow recognition) which should be threaten as an excellent result. These differences occurs due to the different expert-opinion used. Opinion of the first expert was used during the membership functions designing and the opinion of the second expert was used in the validation process. This situation confirms the authors assumptions of necessity to provide the access to manipulation of the membership functions shape by the system user. After changing the \(a \) parameter value for the gas flow rate membership function there were no differences in the recognition results between the human expert and the presented system.

In table 4 the flows transition are marked as follows:
- P->T – for plug flow into transitional flow,
- P->S – for plug flow into slug flow,
- T->P – for transitional flow into plug flow,
- T->S – for transitional flow into slug flow,
- S->P – for slug flow into plug flow,
- S->T – for slug flow into transitional flow,
- P->P – for plug flow into plug flow,
- T->T – for transitional flow into transitional flow,
- S->S – for slug flow into slug flow.

The validation routine was as follows:
- The human expert set the flow parameters (the gas flow rate and the liquid flow rate);
- If the presented system recognition results was equal to the expert opinion, the expert set the desired flow type in the system user panel;
- After 30 seconds the recognition of new flow type was made by the system and the expert. Recognition results of the starting and the output flow was placed in table 4.

As it can be noticed there was only one difference in the recognition of the output flow (flow number 4). The reason of that difference was the same as in the recognition process (results in table 3). When the shapes of the membership functions of the gas flow rate were adjusted due to the human expert opinion there was no differences between the presented system and the expert recognition of the output flows results.
4. Conclusions

The methods of the two phase gas-liquid flows recognition and the research installation control presented in this paper are innovative solution in this field. The fuzzy logic based algorithms allow to imitate the human expert decision and give the proper recognition results for such dynamic process as the two phase gas-liquid flows. Also the research installation control algorithms can be very useful in the industry. All presented in this paper algorithms and solutions are easy scalable and may be applied to any installations equipped with the ECT diagnostic system and the basic measurement equipment.

Acknowledgement

This work is sponsored by National Science Centre as a part of the research project no 2011/01/D/ST6/07209.

Bibliography

