PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | nr 1-2 | 54--57
Tytuł artykułu

Zastosowanie oświetlenia typu LED w fototerapii

Autorzy
Warianty tytułu
EN
Aplication of light emitting diodes LEDs in phototerapy
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono obecny stan wiedzy na temat możliwości zastosowania oświetlenia typu LED w fototerapii. Terapia światłem małej mocy, określana angielskim skrótem LLLT (Low-Level Light Therapy), niekiedy nazywana również fototerapią, jest skuteczną strategią terapeutyczną stosowaną w gojeniu ran oraz w celu redukcji dolegliwości bólowych, zapalenia i obrzęku tkanek. Leczenie to polega na wykorzystywaniu światła o niskiej częstotliwości, które pobudza aktywność biologiczną komórek i nie dostarcza takich dawek energii, które mogłyby uszkodzić termicznie tkanki. Dzięki temu zabiegi z zastosowaniem tej technologii są całkowicie bezbolesne i bezpieczne, a efekty biologiczne związane z działaniem promieniowania emitowanego przez diody LED są w głównej mierze uzależnione od emitowanej długości fali i dawki.
EN
Low level light therapy (LLLT), which is sometimes included under a wider definition of phototherapy, is an effective therapeutic strategy to reduce pain, inflammation, swelling and improve wound healing. Nowadays, light-emitting diodes (LEDs) with the broad range of wavelengths, are widely available for phototherapy. This treatment is based on low frequency light which stimulates the biological activity of cells, and does not provide high doses of energy that could damage tissue thermally. This kind of treatment is entirely painless and safe. The biological effects promoted by LEDs are dependent on irradiation parameters, mainly wavelength and dose.
Wydawca

Czasopismo
Rocznik
Tom
Strony
54--57
Opis fizyczny
Bibliogr. 30 poz., tab.
Twórcy
autor
  • Uniwersytet Medyczny w Białymstoku
autor
  • Politechnika Białostocka
Bibliografia
  • 1. Bloch H. Solartheology, heliotherapy, phototherapy, and biologic effects: a historical overview. J. Natl. Med. Assoc. 1990;82(7):517-8, 520-1.
  • 2. Finsen N.R., Forchhammer H. Resultate der Lichtbehandlung bei unseren ersten 800 Fällen von Lupus vulgaris. [Results of light therapy in our first 800 cases of lupus vulgaris]. Mitt. Fins Med. Lichtinst. 1904;5/6:1–48.
  • 3. Mester E., Spiry T., Szende B., Tota J.G. Effect of laser rays on wound healing. Am. J. Surg. 1971;122(4):532-5.
  • 4. Mester E., Szende B., Spiry T., Scher A. Stimulation of wound healing by laser rays. Acta Chir. Acad. Sci. Hung. 1972;13(3):315-24.
  • 5. Woodruff L.D., Bounkeo J.M., Brannon W.M. et al. The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed. Laser Surg. 2004;22(3):241-7.
  • 6. Round H.J. [letter]. Electrical World 1907;49:309.
  • 7. Whelan H.T., Houle J.M., Donohue D.L. et al. Medical applications of space light- emitting diode technology– space station and beyond. AIP Conf. Proc. 1999; 458: 3–16.
  • 8. Smith K.C.: Laser and LED photobiology. Laser Therapy 2010;19:72-78.
  • 9. Huang Y.Y., Sharma S.K., Carroll J.D., Hamblin M.R. Biphasic Dose Response in Low Level Light Therapy – An Update. Dose Response 2011;9(4):602–618.
  • 10. Sutherland J.C. Biological effects of polychromatic light. Photochem. Photobiol. 2002;76(2):164-70.
  • 11. Kerppers I.I., de Lima C.J., Fernandes A.B., Villaverde A.B. Effect of light-emitting diode (ʎ 627 nm and 945 nm ʎ) treatment on first intention healing: Immunohistochemical analysis. Lasers Med. Sci. 2015;30(1):397-401.
  • 12. Weiss R.A., McDaniel D.H., Geronemus R.G., Weiss M.A. Clinical trial of a novel non-thermal LED array for reversal of photoaging: clinical, histologic, and surface profilometric results. Lasers Surg. Med. 2005;36(2):85-91.
  • 13. Baez F., Reilly L.R. The use of light-emitting diode therapy in the treatment of photoaged skin. J. Cosmet. Dermatol. 2007;6(3):189-94.
  • 14. Lohr N.L., Keszler A., Pratt P., Bienengraber M., Warltier D.C., Hogg N. Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: potential role in cardioprotection. J. Mol. Cell Cardiol. 2009;47(2):256-63.
  • 15. Gold M.H., Sensing W., Biron J.A. Clinical efficacy of home-use blue-light therapy for mild-to moderate acne. J. Cosmet. Laser Ther. 2011 Dec;13(6):308-14.
  • 16. Kawada A., Aragane Y., Kameyama H., et al. Acne phototherapy with a high-intensity, enhanced, narrow-band, blue light source: an open study and in vitro investigation. J. Dermatol. Sci. 2002; 30:129.
  • 17. Na J.I., Suh D.H. Red light phototherapy alone is effective for acne vulgaris: randomized, single-blinded clinical trial. Dermatol. Surg. 2007; 33:1228–33.
  • 18. Kwon H.H., Lee J.B., Yoon J.Y., Park S.Y., Ryu H.H., Park B.M., Kim Y.J., Suh D.H. The clinical and histological effect of home-use, combination blue-red LED phototherapy for mild-to-moderate acne vulgaris in Korean patients: a double-blind, randomized controlled trial. Br. J. Dermatol. 2013 May;168(5):1088-94.
  • 19. Prindeze N.J., Moffatt L.T., Shupp J.W. Mechanisms of action for light therapy: a review of molecular interactions. Exp. Biol. Med. (Maywood) 2012;237(11):1241-8.
  • 20. Spitler R., Berns M.W. Comparison of laser and diode sources for acceleration of in vitro wound healing by low-level light therapy. J. Biomed. Opt. 2014;19(3):38001.
  • 21. de Sousa A.P., Gurgel C.A., Ramos E.A. et al. Infrared LED light therapy influences the expression of fibronectin and tenascin in skin wounds of malnourished rats-a preliminary study. Acta Histochem. 2014;116(7):1185-91.
  • 22. de Oliveira R.A,. Fernandes G.A., Lima A.C., Tajra Filho A.D., de Barros Araújo R. Jr, Nicolau R.A. The effects of LED emissions on sternotomy incision repair after myocardial revascularization: a randomized double-blind study with follow-up. Lasers Med. Sci. 2014;29(3):1195-202.
  • 23. Whelan H.T., Smits R.L. Jr, Buchman E.V. et al. Effect of NASA light-emitting diode irradiation on wound healing. J. Clin. Laser Med. Surg. 2001;19(6):305-14.
  • 24. Adamskaya N., Dungel P., Mittermayr R. et al. Light therapy by blue LED improves wound healing in an excision model in rats. Injury 2011;42(9):917-21.
  • 25. Dungel P., Hartinger J., Chaudary S. et al. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg. Med. 2014 Oct 31.
  • 26. Dai T., Vrahas M.S., Murray C.K., Hamblin M.R. Ultraviolet C irradiation: an alternative antimicrobial approach to localized infections? Expert Rev. Anti Infect. Ther. 2012;10(2):185-95.
  • 27. Zhang Y., Zhu Y., Gupta A. et al. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. J. Infect Dis. 2014;209(12):1963-71.
  • 28. Dall Agnol M.A., Nicolau R.A., de Lima C.J., Munin E. Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med. Sci. 2009;24(6):909-16.
  • 29. Moreno I., Sun C.C. Modeling the radiation pattern of LEDs. Opt. Express 2008;16(3):1808-19.
  • 30. Inada S.A., Kamiyama S., Akasaki I. et al. Development of an ultraviolet A1 light emitting diode-based device for phototherapy. Open Dermatol. J. 2012;6:13-24.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-3826dafb-fbdd-4693-ac45-3a40c216365e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.