PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 63, nr 2 | 465--474
Tytuł artykułu

Influence of convective heat and mass conditions in MHD flow of nanofluid

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article aims to investigate the two-dimensional magnetohydrodynamic (MHD) boundary layer flow of nanofluid. Convective mass condition is introduced. Analysis has been discussed in the presence of an applied magnetic field. The Brownian motion and thermophoresis effects are incorporated. The arising nonlinear problems are first converted to ordinary differential equations and then series solutions are constructed. Convergence of series solutions is examined through plots and numerical values. Results are plotted and discussed for the temperature and concentration. Numerical computations for skin-friction coefficient, local Nusselt and Sherwood numbers are performed and analyzed. Comparison with the previous limiting case is noted in an excellent agreement.
Wydawca

Rocznik
Strony
465--474
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
  • Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000, Pakistan, aliqau70@yahoo.com
autor
  • Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000, Pakistan / Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
Bibliografia
  • [1] A. Sharma, V.V. Tyagi, C.R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications”, Renew. Sustain. Energy Rev. 13, 318-345 (2009).
  • [2] S. Kakac and A. Pramuanjaroenky, “Review of convective heat transfer enhancement with nanofluids”, Int. J. Heat Mass Transfer 52, 3187-3196 (2009).
  • [3] S.U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles, in Proc. 1995 ASME Int. Mechanical Engineering Congress and Exposition ASME, FED 231/ MD 66, 99-105 (1995).
  • [4] S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, “Anomalously thermal conductivity enhancement in nanotube suspensions”, Appl. Phys. Lett. 79, 2252-2254 (2001).
  • [5] O.D. Makinde and A. Aziz, “Boundary layer flow of nanofluid past a stretching sheet with a convective boundary condition”, Int. J. Therm. Sci. 50, 1326-1332 (2011).
  • [6] A. Alsaedi, M. Awais, and T. Hayat, “Effects of heat generation/ absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions”, Commun. Nonlinear Sci. Numer. Simulat. 17, 4210-4223 (2012).
  • [7] M.M. Rashidi, S. Abelman, and N. F. Mehr, “Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid”, Int. J. Heat Mass Transfer 62, 515-525 (2013).
  • [8] M. Turkyilmazoglu, “Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids”, Chem. Engin. Sci. 84, 182-187 (2012).
  • [9] S. Nadeem and C. Lee, “Boundary layer flow of nanofluid over an exponentially stretching surface”, Nanoscale Research Lett. 7, 94 (2012).
  • [10] O.D. Makinde, W.A. Khan, and Z.H. Khan, “Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet”, Int. J. Heat Mass Transfer, 62, 526-533 (2013).
  • [11] M. Mustafa, M.A. Farooq, T. Hayat, and A. Alsaedi, “Numerical and series solutions for stagnation-point flow of nanofluid over an exponentially stretching sheet”, Plos One 8, e61859 (2013).
  • [12] W.N. Mutuku-Njane and O.D. Makinde, “Combined effect of buoyancy force and Navier slip on MHD flow of nanofluid over a convectively heated vertical porous plate”, Scientific Worrld J. 2013, 725643 (2013).
  • [13] O.D. Makinde, “Effects of viscous dissipation and Newtonian heating on boundary layer flow of nanofluids over a flat plate”, Int. J. Numer. Methods Heat Fluid Flow 23, 1291-1303 (2013).
  • [14] O.D. Makinde, “Computational modelling of nanofluids flow over a convectively heated unsteady stretching sheet”, Current Nanoscience 9, 673-678 (2013).
  • [15] A.V. Kuznetson and D.A. Nield, “The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid”, Int. J. Heat Mass Transfer 65, 682-685 (2013).
  • [16] W.N. Mutuku-Njane and O.D. Makinde, “MHD nanofluid flow over a permeable vertical plate with convective heating”, J. Comput. Theore. Nanoscience 11, 667-675 (2014).
  • [17] G.C. Layek, S. Mukhopadhyay, and S.A. Samad, “Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/ generation and suction/blowing”, Int. Commun. Heat Mass Transfer 34, 347-356 (2007).
  • [18] O.D. Makinde, “On MHD boundary-layer flow and mass transfer past a vertical plate in a porous medium with constant heat flux”, Int. J. Numer. Methods Heat Fluid Flow 19, 546-554 (2009).
  • [19] S.S. Motsa, S. Shateyi, and Z. Makukula, “Homotopy analysis of free convection boundary layer flow with heat and mass transfer”, Chem. Eng. Commun. 198, 783-795 (2011).
  • [20] K. Bhattacharyya, “Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet”, Int. Commun. Heat Mass Transfer 38, 917-922 (2011).
  • [21] M. Mahmood, S. Asghar, and M.A. Hossain, “Transient mixed convection flow arising due to thermal and mass diffusion over porous sensor surface inside squeezing horizontal channel”, Appl. Math. Mech.-Engl. Ed. 34, 97-112 (2013).
  • [22] M. Turkyilmazoglu, “Heat and mass transfer of MHD second order slip flow”, Comput. Fluids 71, 426-434 (2013).
  • [23] S.A. Shehzad, F.E. Alsaadi, S.J. Monaquel, and T. Hayat, “Soret and Dufour effects on the stagnation point flow of Jeffery fluid with convective boundary condition”, Eur. Phys. J. Plus 128, 56 (2013).
  • [24] M. Turkyilmazoglu and I. Pop, “Soret and heat source effects on the unsteady radiative MHD free convection flow from an impulsively started infinite vertical plate”, Int. J. Heat Mass Transfer 55, 7635-7644 (2012).
  • [25] M.M. Rashidi, M. Ali, N. Freidoonimehr, and F. Nazari, “Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm”, Energy 55, 497-510 (2013).
  • [26] L. Rundora and O.D. Makinde, “Effects of suction/injection on unsteady reactive variable viscosity non-Newtonian fluid flow in a channel filled with porous medium and convective boundary conditions”, J. Petroleum Sci. Eng. 108, 328-335 (2013).
  • [27] S.A. Shehzad, A. Alsaedi, and T. Hayat, “Hydromagnetic steady flow of Maxwell fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux”, Plos One 8, e68139 (2013).
  • [28] S.J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Springer & Higher Education Press, Heidelberg, 2012.
  • [29] M. Turkyilmazoglu, “Solution of the Thomas-Fermi equation with a convergent approach”, Commun. Nonlinear Sci. Numer. Simulat. 17, 4097-4103 (2012).
  • [30] W. Zhang, Y.H. Qian, and S.K. Lai, “Extended homotopy analysis method for multi-degree-of-freedom non-autonomous nonlinear dynamical systems and its application”, Acta Mech. 223, 2537-2548 (2012).
  • [31] M.M. Rashidi, M. Keimanesh, and S.C. Rajvanshi, “Study of pulsatile flow in a porous annulus with the homotopy analysis method”, Int. J. Numer. Methods Heat Fluid Flow 22, 971-989 (2012).
  • [32] S. Abbasbandy, M.S. Hashemi, and I. Hashim, “On convergence of homotopy analysis method and its application to fractional integro-differential equations”, Quaestiones Mathematicae 36, 93-105 (2013).
  • [33] T. Hayat, M. Waqas, S.A. Shehzad, and A. Alsaedi, “Mixed convection radiative flow of Maxwell fluid near a stagnation point with convective condition”, J. Mech. 29, 403-409 (2013).]
  • [34] M. Ramzan, M. Farooq, A. Alsaedi, and T. Hayat, “MHD three-dimensional flow of couple stress fluid with Newtonian heating”, Eur. Phys. J. Plus 128, 49 (2013).
  • [35] S.A. Shehzad, M. Qasim, T. Hayat, M. Sajid, and S. Obaidat, “Boundary layer flow of Maxwell fluid with power law heat flux and heat source”, Int. J. Numer. Methods Heat Fluid Flow 23, 1225-1241 (2013).
  • [36] H.N. Hassan and M.M. Rashidi, “An analytic solution of micro polar flow in a porous channel with mass injection using homotopy analysis method”, Int. J. Numer. Methods Heat Fluid Flow 24, 419-437 (2014).
  • [37] T. Hayat, S.A. Shehzad, S. Al-Mezel, and A. Alsaedi, “Threedimensional flow of an Oldroyd-B fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux”, J. Hydrol. Hydromech. 62, 117-125 (2014).
  • [38] T. Hayat, S. Asad, and A. Alsaedi, “Flow of variable thermal conductivity fluid due to inclined stretching cylinder with viscous dissipation and thermal radiation”, Appl. Math. Mech. 35, 717-728 (2014).
  • [39] H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, 1964. 474
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-36b57fba-c230-4ac8-b452-323e37fcb74a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.