Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 40, No. 2 | 151--157
Tytuł artykułu

A Simulation for Detecting Nonlinear Echoes from Microbubbles Packets

Treść / Zawartość
Warianty tytułu
Języki publikacji
This work presents a simulation of the response of packets of microbubbles in an ultrasonic pulse-echo scan line. Rayleigh-Plesset equation has been used to predict the echo from numerically obtained radial dynamics of microbubbles. Varying the number of scattering microbubbles on the pulse wave form has been discussed. To improve microbubble-specific imaging at high frequencies, the subharmonic and second harmonic signals from individual microbubbles as well as microbubbles packets were simulated as a function of size and pressure. Two different modes of harmonic generation have been distinguished. The strength and bandwidth of the subharmonic component in the scattering spectrum of microbubbles is greater than that of the second harmonic. The pressure spectra provide quantitative and detailed information on the dynamic behaviour of ultrasound contrast agent microbubbles packet.

Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
  • Physics Department, Faculty of Science, Minia University, Egypt
  • Physics Department, Faculty of Science, Minia University, Egypt
  • 1. Ali M.G.S. (2000), Analysis of Broadband Piezoelectric Transducers by Discreet Time Model, Egypt. J. Sol., 23, 287–295.
  • 2. Ali M.G. (1999), Discrete time model of acoustic waves transmitted through layer, Journal of Sound and Vibration, 224, 349–357.
  • 3. Feng Z.C., Leal L.G. (1997), Nonlinear bubble dynamics, Ann. Rev. Fluid Mech., 29, 201–243.
  • 4. Leighton T.G. (1994), The Acoustic Bubble, Academic Press, London, UK.
  • 5. Liang J.F., ChenW.Z., ShaoW.H., Shui B. (2012), A spherical Oscillation of Two Interacting Bubbles in an Ultrasound Field, Chin. Phys. Lett., 29.
  • 6. Marmottant P., van der Meer S.M., Emmer M., Versluis M., Jong N., Hilgenfeldt S., Lohse D. (2005), A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture, J. Acoust. Soc. Am., 118, 3499–3505.
  • 7. Neppiras E., Noltingk B. (1951), Cavitation produced by ultrasonics: Theoretical conditions for the onset of cavitation, Proceedings of the Physical Society Section B, 64, 1032–1038.
  • 8. Noltingk B., Neppiras E. (1950), Cavitation produced by ultrasonics, Proceedings of the Physical Society Section B, 63, 674–685.
  • 9. Plesset M. (1949), The dynamics of cavitation bubbles, Journal of Applied Mechanics, 16, 277–282.
  • 10. Poritsky H. (1952), The collapse or growth of a spherical bubble or cavity in a viscous fluid, pp. 813–821, Proceedings of the first US National Congress on Applied Mechanics.
  • 11. Prosperetti A. (1984), Bubble phenomena in sound fields, Ultrasonic, 22, 115–124.
  • 12. Rayleigh L. (1917), On the pressure developed in a liquid during the collapse of a spherical cavity, Philosophical Magazine, 34, 94–98.
  • 13. Sijl J., Overvelde M., Dollet B., Garbin V., Jong N., Lohse D., Versluis M. (2011a), Compression-only’ behavior: A second order nonlinear response of ultrasound contrast agent micro bubbles, J. Acoust. Soc. Am., 129, 1729–1739.
  • 14. Sijl J., Hendrik J. V, Rozendal T., Jong N., Lohse D., Versluisa M. (2011b), Combined optical and acoustical detection of single microbubble dynamics, J. Acoust. Soc. Am., 130, 3271-3281.
  • 15. Sijl J., Dollet B., Overvelde M., Garbin V., Rozendal T., Jong N., Lohse D., Versluis M. (2010), Subharmonic behavior of phospholipid-coated microbubbles, J. Acoust. Soc. Am., 128, 3239–3252.
  • 16. Vokurka K. (1985), On rayleigh’s model of a freely oscillating bubble, I. Basic relations Czechoslovak J. Phys., 35, 28–40.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.