Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 62, no. 6 | 1262--1282
Tytuł artykułu

Analysis of the spatial distribution between successive earthquakes occurred in various regions in the world

Warianty tytułu
Języki publikacji
The earthquake spatial distribution is being studied, using earthquake catalogs from different seismic regions (California, Canada, Central Asia, Greece, and Japan). The quality of the available catalogs, taking into account the completeness of the magnitude, is examined. Based on the analysis of the catalogs, it was determined that the probability densities of the inter-event distance distribution collapse into single distribution when the data is rescaled. The collapse of the data provides a clear illustration of earthquake-occurrence self-similarity in space.

Opis fizyczny
Bibliogr. 72 poz.
  • [1] Abe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108,B2, 2113, DOI: 10.1029/2002JB002220.
  • [2] Adams, J., and P. Basham (1991), The seismisity and seismotectonics of eastern Canada. In: D.B. Slemmons, E.R. Engdahl, M.D. Zoback, and D.D. Blackwell (eds.), Neotectonics of North America. Vol. 1. Decade Map Volume to Accompany the Neotectonic Maps, Part of the Continent-scale Maps of North America, Geological Society of America, Boulder, USA, 261–276.
  • [3] Baiesi, M. (2009), Correlated earthquakes in a self-organized model, Nonlin. Process. Geophys. 16,2, 233–240, DOI: 10.5194/npg-16-233-2009.
  • [4] Baiesi, M., and M. Paczuski (2004), Scale-free networks of earthquakes and aftershocks, Phys. Rev. E 69, 066106, DOI: 10.1103/PhysRevE.69.066106.
  • [5] Bak, P. (1996), How Nature Works: The Science of Self-Organized Criticality, Copernicus Series, Springer, New York, 212 pp.
  • [6] Bak, P., C. Tang, and K. Wiesenfeld (1987), Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59,4, 381–384, DOI: 10.1103/PhysRevLett.59.381.
  • [7] Bak, P., K. Christensen, L. Danon, and T. Scanlon (2002), Unified scaling law for earthquakes, Phys. Rev. Lett. 88,17, 178501, DOI: 10.1103/PhysRevLett.88.178501.
  • [8] Balankin, A.S., D.M. Matamoros, J.P. Ortiz, M.P. Ortiz, E.P. León, and D.S. Ochoa (2009), Scaling dynamics of seismic activity fluctuations, EPL 85,3, 39001, DOI: 10.1209/0295-5075/85/39001.
  • [9] Batac, R.C., and H. Kantz (2013), Spatiotemporal clustering and separation in regional earthquakes, arXiv:1307.1609 [physics.geo-ph].
  • [10] Białecki, M. (2012a), An explanation of the shape of the universal curve of the scaling law for the earthquake recurrence time distributions, arXiv:1210.7142v1 [physics.geo-ph].
  • [11] Białecki, M. (2012b), Motzkin numbers out of Random Domino Automaton, Phys. Lett. A 376,45, 3098–3100, DOI: 10.1016/j.physleta.2012.09.022.
  • [12] Białecki, M., and Z. Czechowski (2013), On one-to-one dependence of rebound parameters on statistics of clusters: Exponential and inverse-power distributions out of Random Domino Automaton, J. Phys. Soc. Jpn. 82,1, 014003, DOI: 10.7566/JPSJ.82.014003.
  • [13] Bonnet, E., O. Bour, N.E. Odling, P. Davy, I. Main, P. Cowie, and B. Berkowitz (2001), Scaling of fracture systems in geological media, Rev. Geophys. 39,3, 347–383, DOI: 10.1029/1999RG000074.
  • [14] Bottiglieri, M., and C. Godano (2007), On-off intermittency in earthquake occurrence, Phys. Rev. E 75,2, 026101, DOI: 10.1103/PhysRevE.75.026101.
  • [15] Christensen, K., L. Danon, T. Scanlon, and P. Bak (2002), Unified scaling law for earthquakes, Proc. Natl. Acad. Sci. USA 99,Suppl. 1, 2509–2513, DOI: 10.1073/pnas.012581099.
  • [16] Christoskov, L., and R. Lazarov (1981), A method for estimating the seismological catalogues representativeness and its application to the central part of the Balkan region, Bulg. Geophys. J. 8,3, 66–76 (in Bulgarian).
  • [17] Corral, Á. (2003), Local distributions and rate fluctuations in a unified scaling law for earthquakes, Phys. Rev. E 68,3, 035102(R), DOI: 10.1103/PhysRevE.68.035102.
  • [18] Corral, Á. (2004a), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett. 92,10, 108501, DOI: 10.1103/PhysRevLett.92.108501.
  • [19] Corral, Á. (2004b), Universal local versus unified global scaling laws in the statistics of seismicity, Physica A 340,4, 590–597, DOI: 10.1016/j.physa.2004.05.010.
  • [20] Corral, Á. (2005a), Mixing of rescaled data and Bayesian inference for earthquake recurrence times, Nonlin. Process. Geophys. 12,1, 89–100, DOI: 10.5194/npg-12-89-2005.
  • [21] Corral, Á. (2005b), Renormalization-group transformations and correlations of seismicity, Phys. Rev. Lett. 95,2, 028501, DOI: 10.1103/PhysRevLett.95.028501.
  • [22] Corral, Á. (2005c), Time-decreasing hazard and increasing time until the next earthquake, Phys. Rev. E 71,1, 017101, DOI: 10.1103/PhysRevE.71.017101.
  • [23] Corral, Á. (2006a), Universal earthquake-occurrence jumps, correlations with time, and anomalous diffusion. Phys. Rev. Lett. 97,17, 178501, DOI: 10.1103/PhysRevLett.97.178501.
  • [24] Corral, Á. (2006b), Dependence of earthquake recurrence times and independence of magnitudes on seismicity history, Tectonophysics 424,3–4, 177–193, DOI: 10.1016/j.tecto.2006.03.035.
  • [25] Corral, Á. (2006c), Statistical features of earthquake temporal occurrence. In: P. Bhattacharyya, and B.K. Chakrabarti (eds.), Modelling Critical and Catastrophic Phenomena in Geoscience: A Statistical Physics Approach, Lecture Notes in Physics, Vol. 705, Springer, Berlin Heidelberg, 191–221, DOI: 10.1007/3-540-35375-5_8.
  • [26] Corral, Á. (2008), Scaling and universality in the dynamics of seismic occurrence and beyond. In: A. Carpinteri and G. Lacidogna (eds.), Acoustic Emission and Critical Phenomena, Taylor & Francis Group, London, 225–244, DOI: 10.1201/9780203892220.ch2.2.
  • [27] Corral, Á. (2009), Statistical tests for scaling in the inter-event times of earthquakes in California, Int. J. Modern Phys. B 23,28–29, 5570–5582, DOI: 10.1142/S0217979209063869.
  • [28] Corral, Á., and K. Christensen (2006), Comment on “Earthquakes descaled: On waiting time distributions and scaling laws”, Phys. Rev. Lett. 96,10, 109801, DOI: 10.1103/PhysRevLett.96.109801.
  • [29] Davidsen, J., and C. Goltz (2004), Are seismic waiting time distributions universal?, Geophys. Res. Lett. 31,21, L21612, DOI: 10.1029/2004GL020892.
  • [30] Davidsen, J., and M. Paczuski (2005), Analysis of the spatial distribution between successive earthquakes, Phys. Rev. Lett. 94,4, 048501, DOI: 10.1103/PhysRevLett.94.048501.
  • [31] Davidsen, J., P. Grassberger, and M. Paczuski (2006), Earthquake recurrence as a record breaking process, Geophys. Res. Lett. 33,11, L11304, DOI: 10.1029/2006GL026122.
  • [32] De Arcangelis, L., C. Godano, E. Lippiello, and M. Nicodemi (2006), Universality in solar flare and earthquake occurrence, Phys. Rev. Lett. 96,5, 051102, DOI: 10.1103/PhysRevLett.96.051102.
  • [33] Deluca, A., and Á. Corral (2013), Fitting and goodness-of-fit test of non-truncated and truncated power-law distributions, Acta Geophys. 61,6, 1351–1394, DOI: 10.2478/s11600-013-0154-9.
  • [34] Dewey, J.W., D.P. Hill, W.L. Ellsworth, and E.R. Engdahl (1989), Earthquakes, faults, and the seismotectonic framework of the contiguous United States. In: L.C. Pakiser, and W.D. Mooney (eds.), Geophysical Framework of the Continental United States, GSA Memoirs, Vol. 172, Geological Society of America, Boulder, USA, 541–576, DOI: 10.1130/MEM172-p541.
  • [35] Eneva, M., and M.W. Hamburger (1989), Spatial and temporal patterns of earthquake distribution in Soviet Central Asia: Application of pair analysis statistics, Bull. Seismol. Soc. Am. 79,5, 1457–1476.
  • [36] Eneva, M., M.W. Hamburger, and G.A. Popandopulo (1992), Spatial distribution of earthquakes in aftershock zones of the Garm region, Soviet Central Asia, Geophys. J. Int. 109,1, 38–53, DOI: 10.1111/j.1365-246X.1992.tb00077.x.
  • [37] Gutenberg, R., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 185–188.
  • [38] Hainzl, S., F. Scherbaum, and C, Beauval (2006), Estimating background activity based on interevent-time distribution, Bull. Seismol Soc. Am. 96,1, 313–320, DOI: 10.1785/0120050053.
  • [39] Helmstetter, A. (2003), Is earthquake triggering driven by small earthquakes?, Phys. Res. Lett. 91,5, 058501, DOI: 10.1103/PhysRevLett.91.058501.
  • [40] Helmstetter, A., and D. Sornette (2004), Comment on “Power-law time distribution of large earthquakes”, Phys. Rev. Lett. 92,12, 129801, DOI: 10.1103/PhysRevLett.92.129801.
  • [41] Holliday, J.R., K.Z. Nanjo, K.F. Tiampo, J.B. Rundle, and D.L. Turcotte (2005), Earthquake forecasting and its verification, Nonlin. Process. Geophys. 12,6, 965–977, DOI: 10.5194/npg-12-965-2005.
  • [42] Holliday, J.R., J.B. Rundle, D.L. Turcotte, W. Klein, K.F. Tiampo, and A. Donnellan (2006), Space-time clustering and correlations of major earthquakes, Phys. Rev. Lett. 97,23, 238501, DOI: 10.1103/PhysRevLett.97.238501.
  • [43] Ito, K. (1995), Punctuated-equilibrium model of biological evolution is also a selforganized-criticality model of earthquakes, Phys. Rev. E 52,3, 3232–3233, DOI: 10.1103/PhysRevE.52.3232.
  • [44] Kagan, Y.Y. (1994), Observational evidence for earthquakes as a nonlinear dynamic process, Physica D 77,1–3, 160–192, DOI: 10.1016/0167-2789(94)90132-5.
  • [45] Kagan, Y.Y. (2006), Why does theoretical physics fail to explain and predict earthquake occurrence? In: P. Bhattacharyya, and B.K. Chakrabarti (eds), Modelling Critical and Catastrophic Phenomena in Geoscience: A Statistical Physics Approach, Lecture Notes in Physics, Vol. 705, 303–359, Springer, Berlin-Heidelberg, DOI: 10.1007/3-540-35375-5_12.
  • [46] Kagan, Y.Y., and L. Knopoff (1980), Spatial distribution of earthquakes: the twopoint correlation function, Geophys. J. Int. 62,2, 303–320, DOI: 10.1111/j.1365-246X.1980.tb04857.x.
  • [47] Kanamori, H., and E.E. Brodsky (2004), The physics of earthquakes, Rep. Prog. Phys. 67,8, 1429–1496, DOI: 10.1088/0034-4885/67/8/R03.
  • [48] Lindman, M., K. Jonsdottir, R. Roberts, B. Lund, and R. Bödvarsson (2005), Earthquakes descaled: On waiting time distributions and scaling laws, Phys. Rev. Lett. 94,10, 108501, DOI: 10.1103/PhysRevLett.94.108501.
  • [49] Lindman, M., K. Jonsdottir, R. Roberts, B. Lund, and R. Bödvarsson (2006), A reply to the comment by Alvaro Corral and Kim Christensen, Phys. Rev. Lett. 96,10, 109802, DOI: 10.1103/PhysRevLett.96.109802.
  • [50] Livina, V., S. Tuzov, S. Havlin, and A. Bunde (2004), Recurrence intervals between earthquakes strongly depend on history, Physica A 348, 591–595, DOI: 10.1016/j.physa.2004.08.032.
  • [51] Livina, V.N., S. Havlin, and A. Bunde (2005), Memory in the occurrence of earthquakes, Phys. Rev. Lett. 95,20, 208501, DOI: 10.1103/PhysRevLett.95.208501.
  • [52] Marekova, E. (2012), Testing a scaling law for the earthquake recurrence time distributions, Acta Geophys. 60,3, 858–873, DOI: 10.2478/s11600-012-0007-y.
  • [53] Mega, M.S., P. Allegrini, P. Grigolini, V. Latora, L. Palatella, A. Rapisarda, and S. Vinciguerra (2003), Power-law time distribution of large earthquakes, Phys. Rev. Lett. 90,18, 188501, DOI: 10.1103/PhysRevLett.90.188501.
  • [54] Mega, M.S., P. Allegrini, P. Grigolini, V. Latora, L. Palatella, A. Rapisarda, and S. Vinciguerra (2004), A reply to the comment by A. Helmstetter and D. Sornette, Phys. Rev. Lett. 92,12, 129802, DOI: 10.1103/PhysRevLett.92.129802.
  • [55] Molchan, G., and T. Kronrod (2005), On the spatial scaling of seismicity rate, Geophys. J. Int. 162,3, 899–909, DOI: 10.1111/j.1365-246X.2005.02693.
  • [56] Peixoto, T.P., and C.P.C. Prado (2004), Distribution of epicenters in the Olami-Feder-Christensen model, Phys. Rev. E 69,2, 025101, DOI: 10.1103/PhysRevE.69.025101.
  • [57] Reasenberg, P. (1985), Second-order moment of central California seismicity, 1969–1982, J. Geophys. Res. 90,B7, 5479–5495, DOI: 10.1029/JB090iB07p05479.
  • [58] Rogers, G.C., and R.B. Horner (1991), An overview of western Canadian seismicity. In: D.B. Slemmons, E.R. Engdahl, M.D. Zoback, and D.D. Blackwell (eds.), Neotectonics of North America. Geology of North America, Geological Society of America, Boulder, 69–76.
  • [59] Saichev, A., and D. Sornette (2006), “Universal” distribution of interearth-quake times explained, Phys. Rev. Lett. 97,7, 078501; DOI: 10.1103/PhysRevLett.97.078501.
  • [60] Sanford, A.R., L.H. Jaksha, and D.J. Cash (1991), Seismicity of Rio Grande rift in New Mexico. In: D.B. Slemmons, E.R. Engdahl, M.D. Zoback, and D.D. Blackwell (eds.), Neotectonics of North America. Geology of North America, Geological Society of America, Boulder, 229–244.
  • [61] Scholz, C.H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge University Press, Cambridge, 471 pp.
  • [62] Schorlemmer, D., S. Wiemer, and M. Wyss (2005), Variations in earthquake-size distribution across different stress regimes, Nature 437,7058, 539–542, DOI: 10.1038/nature04094.
  • [63] Shcherbakov, R., D.L. Turcotte, and J.B. Rundle (2005a), Aftershock statistics, Pure Appl. Geophys. 162,6–7, 1051–1076, DOI: 10.1007/s00024-004-2661-8.
  • [64] Shcherbakov, R., G. Yakovlev, D.L. Turcotte, and J.B. Rundle (2005b), Model for the distribution of aftershock interoccurrence times, Phys. Rev. Lett. 95,21, 218501, DOI: 10.1103/PhysRevLett.95.218501.
  • [65] Shearer, P., E. Hauksson, and G. Lin (2005), Southern California hypocenter relocation with waveform cross-correlation. Part 2: Results using source-specific station terms and cluster analysis, Bull. Seismol. Soc. Am. 95,3, 904–915, DOI: 10.1785/0120040168.
  • [66] Stein, S., and M. Wysession (2003), An Introduction to Seismology, Earthquakes, and Earth Structure, Blackwell Publishing, Oxford, 498 pp.
  • [67] Touati, S., M. Naylor, and I.G. Main (2009), Origin and nonuniversality of the earthquake interevent time distribution, Phys. Rev. Lett. 102,16, 168501, DOI: 10.1103/PhysRevLett.102.168501.
  • [68] Turcotte, D.L. (1997), Fractals and Chaos in Geology and Geophysics, 2nd ed., Cambridge University Press, Cambridge, 398 pp.
  • [69] Utsu, T. (2002), Statistical features of seismicity, Int. Geophys. 81,Part A, 719–732, DOI: 10.1016/S0074-6142(02)80246-7.
  • [70] Utsu, T., Y. Ogata, and R.S. Matsu’ura (1995), The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth 43,1, 1–33, DOI: 10.4294/jpe1952.43.1.
  • [71] Wesnousky, S.G. (1986), Earthquakes, qaternary faults, and seismic hazard in California, J. Geophys. Res. 91,B12, 12587–12631, DOI: 10.1029/JB091iB12p12587.
  • [72] Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72,2, 373–382, DOI: 10.1785/gssrl.72.3.373.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.